Large-Scale Cortical Networks for Hierarchical Prediction and Prediction Error in the Primate Brain

According to predictive-coding theory, cortical areas continuously generate and update predictions of sensory inputs at different hierarchical levels and emit prediction errors when the predicted and actual inputs differ. However, predictions and prediction errors are simultaneous and interdependent processes, making it difficult to disentangle their constituent neural network organization. Here, we test the theory by using high-density electrocorticography (ECoG) in monkeys during an auditory "local-global" paradigm in which the temporal regularities of the stimuli were controlled at two hierarchical levels. We decomposed the broadband data and identified lower- and higher-level prediction-error signals in early auditory cortex and anterior temporal cortex, respectively, and a prediction-update signal sent from prefrontal cortex back to temporal cortex. The prediction-error and prediction-update signals were transmitted via γ (>40 Hz) and α/β (<30 Hz) oscillations, respectively. Our findings provide strong support for hierarchical predictive coding and outline how it is dynamically implemented using distinct cortical areas and frequencies.

[1]  Hualou Liang,et al.  Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment , 2000, Biological Cybernetics.

[2]  Rasmus Bro,et al.  The N-way Toolbox for MATLAB , 2000 .

[3]  A. Clark Whatever next? Predictive brains, situated agents, and the future of cognitive science. , 2013, The Behavioral and brain sciences.

[4]  Fumikazu Miwakeichi,et al.  Decomposing EEG Data into Space-Time-Frequency Components Using Parallel Factor Analysis and Its Relation with Cerebral Blood Flow , 2007, ICONIP.

[5]  R. Zatorre,et al.  Listening to musical rhythms recruits motor regions of the brain. , 2008, Cerebral cortex.

[6]  H. Akaike A new look at the statistical model identification , 1974 .

[7]  R. Bro,et al.  A new efficient method for determining the number of components in PARAFAC models , 2003 .

[8]  Marco Iacoboni,et al.  The Essential Role of Premotor Cortex in Speech Perception , 2007, Current Biology.

[9]  R. Oostenveld,et al.  Nonparametric statistical testing of EEG- and MEG-data , 2007, Journal of Neuroscience Methods.

[10]  Jim M. Monti,et al.  Expectation and Surprise Determine Neural Population Responses in the Ventral Visual Stream , 2010, The Journal of Neuroscience.

[11]  Janneke F. M. Jehee,et al.  Less Is More: Expectation Sharpens Representations in the Primary Visual Cortex , 2012, Neuron.

[12]  S. Dehaene,et al.  Evidence for a hierarchy of predictions and prediction errors in human cortex , 2011, Proceedings of the National Academy of Sciences.

[13]  Karl J. Friston,et al.  Attentional Enhancement of Auditory Mismatch Responses: a DCM/MEG Study , 2015, Cerebral cortex.

[14]  Mingzhou Ding,et al.  Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance , 2001, Biological Cybernetics.

[15]  M. Wibral,et al.  The Faces of Predictive Coding , 2015, The Journal of Neuroscience.

[16]  Lars Kai Hansen,et al.  Parallel Factor Analysis as an exploratory tool for wavelet transformed event-related EEG , 2006, NeuroImage.

[17]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[18]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[19]  César F. Lima,et al.  Roles of Supplementary Motor Areas in Auditory Processing and Auditory Imagery , 2016, Trends in Neurosciences.

[20]  H. Kennedy,et al.  Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels , 2014, Neuron.

[21]  Naotaka Fujii,et al.  Long-Term Asynchronous Decoding of Arm Motion Using Electrocorticographic Signals in Monkeys , 2009, Front. Neuroeng..

[22]  Matthew H. Davis,et al.  Prediction Errors but Not Sharpened Signals Simulate Multivoxel fMRI Patterns during Speech Perception , 2016, PLoS biology.

[23]  Jennifer A. Mangels,et al.  Predictive Codes for Forthcoming Perception in the Frontal Cortex , 2006, Science.

[24]  S. Kochen,et al.  Expectation and Attention in Hierarchical Auditory Prediction , 2013, The Journal of Neuroscience.

[25]  H. Barbas,et al.  Relationship of prefrontal connections to inhibitory systems in superior temporal areas in the rhesus monkey. , 2005, Cerebral cortex.

[26]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[27]  E. Maris,et al.  Prior Expectation Mediates Neural Adaptation to Repeated Sounds in the Auditory Cortex: An MEG Study , 2011, The Journal of Neuroscience.

[28]  Karl J. Friston,et al.  A DCM study of spectral asymmetries in feedforward and feedback connections between visual areas V1 and V4 in the monkey , 2015, NeuroImage.

[29]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[30]  Zenas C. Chao,et al.  Large-Scale Information Flow in Conscious and Unconscious States: an ECoG Study in Monkeys , 2013, PloS one.

[31]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[32]  Anne-Lise Giraud,et al.  The contribution of frequency-specific activity to hierarchical information processing in the human auditory cortex , 2014, Nature Communications.

[33]  C. Summerfield,et al.  A Neural Representation of Prior Information during Perceptual Inference , 2008, Neuron.

[34]  Luc H. Arnal,et al.  Cortical oscillations and sensory predictions , 2012, Trends in Cognitive Sciences.

[35]  Pieter M. Kroonenberg,et al.  Three-mode principal component analysis : theory and applications , 1983 .

[36]  S. Dehaene,et al.  Neural signature of the conscious processing of auditory regularities , 2009, Proceedings of the National Academy of Sciences.

[37]  H. Barbas,et al.  Specialized prefrontal “auditory fields”: organization of primate prefrontal-temporal pathways , 2014, Front. Neurosci..

[38]  Arnaud Delorme,et al.  EEGLAB, SIFT, NFT, BCILAB, and ERICA: New Tools for Advanced EEG Processing , 2011, Comput. Intell. Neurosci..

[39]  O. Bertrand,et al.  Oscillatory gamma activity in humans and its role in object representation , 1999, Trends in Cognitive Sciences.

[40]  M. Fukushima,et al.  Studying brain functions with mesoscopic measurements: Advances in electrocorticography for non-human primates , 2015, Current Opinion in Neurobiology.

[41]  C. Curtis,et al.  Persistent activity in the prefrontal cortex during working memory , 2003, Trends in Cognitive Sciences.

[42]  Karl J. Friston,et al.  Dysconnection in Schizophrenia: From Abnormal Synaptic Plasticity to Failures of Self-monitoring , 2009, Schizophrenia bulletin.

[43]  Christopher K. Kovach,et al.  Neural signatures of perceptual inference , 2016, eLife.

[44]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[45]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[46]  S. Dehaene,et al.  Disruption of hierarchical predictive coding during sleep , 2015, Proceedings of the National Academy of Sciences.

[47]  Robert J. Zatorre,et al.  Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms , 2006, NeuroImage.

[48]  Florent Meyniel,et al.  The Neural Representation of Sequences: From Transition Probabilities to Algebraic Patterns and Linguistic Trees , 2015, Neuron.

[49]  H. Kennedy,et al.  Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas , 2016, Neuron.

[50]  S. Dehaene,et al.  A Hierarchy of Responses to Auditory Regularities in the Macaque Brain , 2014, The Journal of Neuroscience.

[51]  Florent Meyniel,et al.  Human Inferences about Sequences: A Minimal Transition Probability Model , 2016, bioRxiv.

[52]  Naotaka Fujii,et al.  Cortical network architecture for context processing in primate brain , 2015, eLife.

[53]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[54]  C. F. Beckmann,et al.  Tensorial extensions of independent component analysis for multisubject FMRI analysis , 2005, NeuroImage.

[55]  P. Roelfsema,et al.  Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex , 2014, Proceedings of the National Academy of Sciences.

[56]  Stephen Lawrie,et al.  Functional Specialization within Rostral Prefrontal Cortex (Area 10): A Meta-analysis , 2006, Journal of Cognitive Neuroscience.

[57]  Terrence J. Sejnowski,et al.  Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis , 2007, NeuroImage.

[58]  Fumikazu Miwakeichi,et al.  Decomposing EEG data into space–time–frequency components using Parallel Factor Analysis , 2004, NeuroImage.

[59]  S. Bressler,et al.  Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[60]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[61]  Henk A. L. Kiers,et al.  Hierarchical relations among three-way methods , 1991 .

[62]  S. Dehaene,et al.  Representation of Numerical and Sequential Patterns in Macaque and Human Brains , 2015, Current Biology.

[63]  R. Knight,et al.  Hierarchy of prediction errors for auditory events in human temporal and frontal cortex , 2016, Proceedings of the National Academy of Sciences.

[64]  William D. Marslen-Wilson,et al.  Conserved Sequence Processing in Primate Frontal Cortex , 2017, Trends in Neurosciences.

[65]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[66]  Karl J. Friston,et al.  Neuroscience and Biobehavioral Reviews , 2014 .

[67]  M. Berger,et al.  High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. , 2005, Journal of neurophysiology.

[68]  Gabriele Lohmann,et al.  Auditory what, where, and when: a sensory somatotopy in lateral premotor cortex , 2003, NeuroImage.

[69]  R. Zatorre,et al.  When the brain plays music: auditory–motor interactions in music perception and production , 2007, Nature Reviews Neuroscience.

[70]  Caspar M. Schwiedrzik,et al.  Stimulus Predictability Reduces Responses in Primary Visual Cortex , 2010, The Journal of Neuroscience.

[71]  R. Harshman,et al.  PARAFAC: parallel factor analysis , 1994 .

[72]  B. Averbeck,et al.  The primate cortical auditory system and neural representation of conspecific vocalizations. , 2009, Annual review of neuroscience.

[73]  L. Fadiga,et al.  Active perception: sensorimotor circuits as a cortical basis for language , 2010, Nature Reviews Neuroscience.

[74]  Yasuo Nagasaka,et al.  Multidimensional Recording (MDR) and Data Sharing: An Ecological Open Research and Educational Platform for Neuroscience , 2011, PloS one.

[75]  Tadashi Isa,et al.  Dynamic Reorganization of Motor Networks During Recovery from Partial Spinal Cord Injury in Monkeys. , 2018, Cerebral cortex.

[76]  Steven L. Bressler,et al.  Wiener–Granger Causality: A well established methodology , 2011, NeuroImage.

[77]  Georg B. Keller,et al.  Sensorimotor Mismatch Signals in Primary Visual Cortex of the Behaving Mouse , 2012, Neuron.

[78]  Luc H. Arnal,et al.  Transitions in neural oscillations reflect prediction errors generated in audiovisual speech , 2011, Nature Neuroscience.

[79]  Sylvain Baillet,et al.  Motor origin of temporal predictions in auditory attention , 2017, Proceedings of the National Academy of Sciences.

[80]  Karl J. Friston,et al.  Dynamic causal modelling of precision and synaptic gain in visual perception — an EEG study , 2012, NeuroImage.

[81]  R. Schubotz Prediction of external events with our motor system: towards a new framework , 2007, Trends in Cognitive Sciences.

[82]  Xiaoqin Wang,et al.  Neural substrates of vocalization feedback monitoring in primate auditory cortex , 2008, Nature.

[83]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[84]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[85]  David Mumford,et al.  On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[86]  D Mumford,et al.  On the computational architecture of the neocortex. II. The role of cortico-cortical loops. , 1992, Biological cybernetics.

[87]  S. Dehaene,et al.  Event-Related Potential, Time-frequency, and Functional Connectivity Facets of Local and Global Auditory Novelty Processing: An Intracranial Study in Humans. , 2015, Cerebral cortex.