A crab swarm at an ecological hotspot: patchiness and population density from AUV observations at a coastal, tropical seamount

A research cruise to Hannibal Bank, a seamount and an ecological hotspot in the coastal eastern tropical Pacific Ocean off Panama, explored the zonation, biodiversity, and the ecological processes that contribute to the seamount’s elevated biomass. Here we describe the spatial structure of a benthic anomuran red crab population, using submarine video and autonomous underwater vehicle (AUV) photographs. High density aggregations and a swarm of red crabs were associated with a dense turbid layer 4–10 m above the bottom. The high density aggregations were constrained to 355–385 m water depth over the Northwest flank of the seamount, although the crabs also occurred at lower densities in shallower waters (∼280 m) and in another location of the seamount. The crab aggregations occurred in hypoxic water, with oxygen levels of 0.04 ml/l. Barcoding of Hannibal red crabs, and pelagic red crabs sampled in a mass stranding event in 2015 at a beach in San Diego, California, USA, revealed that the Panamanian and the Californian crabs are likely the same species, Pleuroncodes planipes, and these findings represent an extension of the southern endrange of this species. Measurements along a 1.6 km transect revealed three high density aggregations, with the highest density up to 78 crabs/m2, and that the crabs were patchily distributed. Crab density peaked in the middle of the patch, a density structure similar to that of swarming insects.

[1]  Nicholas A. Bond,et al.  Causes and impacts of the 2014 warm anomaly in the NE Pacific , 2015 .

[2]  Chris Murphy,et al.  Thick and deformed Antarctic sea ice mapped with autonomous underwater vehicles , 2015 .

[3]  S. Jewett,et al.  Growth, Molting, and Feeding of King Crabs , 2014 .

[4]  R. Thresher,et al.  Strong Depth-Related Zonation of Megabenthos on a Rocky Continental Margin (∼700–4000 m) off Southern Tasmania, Australia , 2014, PloS one.

[5]  R. Bates,et al.  The morphology and structure of the Hannibal Bank fisheries management zone, Pacific Panama using acoustic seabed mapping. , 2013, Revista de biologia tropical.

[6]  R. Cruickshank,et al.  The seven deadly sins of DNA barcoding , 2012, Molecular ecology resources.

[7]  H. Fock Seamounts: Ecology, Fisheries & Conservation , 2012 .

[8]  Rudolf Meier,et al.  On the inappropriate use of Kimura‐2‐parameter (K2P) divergences in the DNA‐barcoding literature , 2012, Cladistics : the international journal of the Willi Hennig Society.

[9]  J. Gyory,et al.  The Role of Season and Salinity in Influencing Barnacle Distributions in Two Adjacent Coastal Mangrove Lagoons , 2011 .

[10]  G. Carvalho,et al.  Systematic and Evolutionary Insights Derived from mtDNA COI Barcode Diversity in the Decapoda (Crustacea: Malacostraca) , 2011, PloS one.

[11]  D. Steinke,et al.  DNA barcoding of marine metazoa. , 2011, Annual review of marine science.

[12]  M. Wicksten Decapod Crustacea of the Californian and Oregonian Zoogeographic Provinces , 2011, Zootaxa.

[13]  Serhiy Morozov,et al.  A Distributed, Architecture-Centric Approach to Computing Accurate Recommendations from Very Large and Sparse Datasets , 2011 .

[14]  G. Poore,et al.  A new classification of the Galatheoidea (Crustacea: Decapoda: Anomura) , 2010 .

[15]  T. Schlacher,et al.  Seamount science scales undersea mountains: new research and outlook , 2010 .

[16]  Simon J. Nicol,et al.  Seamounts are hotspots of pelagic biodiversity in the open ocean , 2010, Proceedings of the National Academy of Sciences.

[17]  D. Sandwell,et al.  The Global Seamount Census , 2010 .

[18]  A. D. Robertis,et al.  Body size dependence of euphausiid spatial patchiness , 2010 .

[19]  M. Boisselier,et al.  Biogeography of the deep-sea galatheid squat lobsters of the Pacific Ocean. , 2010 .

[20]  I. Wehrtmann,et al.  Squat lobsters ( Decapoda : Anomura : Galatheidae ) from deepwater Pacific Costa Rica : species diversity , spatial and bathymetric distribution , 2010 .

[21]  Timothy M Shank,et al.  The ecology of seamounts: structure, function, and human impacts. , 2010, Annual review of marine science.

[22]  V. Tunnicliffe,et al.  Fish activity: a major mechanism for sediment resuspension and organic matter remineralization in coastal marine sediments , 2008 .

[23]  P. Glynn,et al.  Poorly cemented coral reefs of the eastern tropical Pacific: Possible insights into reef development in a high-CO2 world , 2008, Proceedings of the National Academy of Sciences.

[24]  J. Dower,et al.  Seamount Plankton Dynamics , 2008 .

[25]  Divya A. Varkey,et al.  Evidence of a seamount effect on aggregating visitors , 2008 .

[26]  J. Pineda,et al.  Complexity and simplification in understanding recruitment in benthic populations , 2008, Population Ecology.

[27]  A. Longhurst THE PELAGIC PHASE OF PLEURONCODES PLANIPES STIMPSON ( CRUSTACEA , GALATHEIDAE ) IN THE CALIFORNIA CURRENT , 2008 .

[28]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[29]  L. D'croz,et al.  Variability in upwelling along the Pacific shelf of Panama and implications for the distribution of nutrients and chlorophyll , 2007 .

[30]  Hanumant Singh,et al.  Towards High-resolution Imaging from Underwater Vehicles , 2007, Int. J. Robotics Res..

[31]  J. Pineda,et al.  Plankton accumulation and transport in propagating nonlinear internal fronts , 2007 .

[32]  A. Ōkubo,et al.  An analysis of the kinematics of swarming ofAnarete pritchardi kim (Diptera: Cecidomyiidae) , 1974, Researches on Population Ecology.

[33]  S. Jorgensen,et al.  The Home of Blue Water Fish , 2005 .

[34]  G. Polis,et al.  TOWARD AN INTEGRATION OF LANDSCAPE AND FOOD WEB ECOLOGY : The Dynamics of Spatially Subsidized Food Webs , 2005 .

[35]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[36]  C. Roman,et al.  Seabed AUV offers new platform for high‐resolution imaging , 2004 .

[37]  C. Robinson,et al.  The pelagic red crab (Pleuroncodes planipes) related to active upwelling sites in the California Current off the west coast of Baja California , 2004 .

[38]  C. Roman,et al.  Imaging Coral I: Imaging Coral Habitats with the SeaBED AUV , 2004 .

[39]  Leah Edelstein-Keshet,et al.  The Dynamics of Animal Grouping , 2001 .

[40]  J. Gómez‐Gutiérrez,et al.  Hydroacoustical evidence of autumn inshore residence of the pelagic red crab Pleuroncodes planipes at Punta Eugenia, Baja California, Mexico , 2000 .

[41]  N. Bez,et al.  On the use of Lloyd’s index of patchiness , 2000 .

[42]  J. Estes,et al.  Inter-decadal patterns of population and dietary change in sea otters at Amchitka Island, Alaska , 2000, Oecologia.

[43]  Fabián J. Tapia,et al.  Cohorts in space : geostatistical mapping of the age structure of the squat lobster Pleuroncodes monodon population off central Chile , 2000 .

[44]  L. Edelstein-Keshet,et al.  Complexity, pattern, and evolutionary trade-offs in animal aggregation. , 1999, Science.

[45]  M. Hendrickx,et al.  Checklist of Anomuran crabs (Crustacea: Decapoda) from the Eastern tropical Pacific) , 1999 .

[46]  C. Robinson,et al.  The red-crab bloom off the west coast of Baja California, México , 1998 .

[47]  J. A. Koslow,et al.  SEAMOUNTS AND THE ECOLOGY OF DEEP-SEA FISHERIES , 1997 .

[48]  D. Aurioles‐Gamboa,et al.  Seasonal and Bathymetric Changes in Feeding Habits of the Benthic Red Crab Pleuroncodes Planipes (Decapoda, Anomura, Galatheidae) Off the Pacific Coast of Baja California Sur, Mexico , 1997 .

[49]  R. Vrijenhoek,et al.  DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. , 1994, Molecular marine biology and biotechnology.

[50]  W. Donaldson,et al.  Aggregative Mating of Tanner Crabs, Chionoecetes bairdi , 1994 .

[51]  James S. Clark,et al.  Ecological and Evolutionary Consequences of Patchiness: A Marine-Terrestrial Perspective , 1993 .

[52]  Juan Freire,et al.  Spatial Distribution of Munida intermedia and M. sarsi (Crustacea: Anomura) on the Galician Continental Shelf (NW Spain): Application of Geostatistical Analysis , 1992 .

[53]  W. Donaldson,et al.  FIRST OBSERVATIONS OF PODDING BEHAVIOR FOR THE PACIFIC LYRE CRAB HYAS LYRATUS (DECAPODA: MAJIDAE) , 1992 .

[54]  R. Degoursey,et al.  Aspects of a mating aggregation of the spider crab, Libinia emarginata , 1992 .

[55]  Edward Brinton,et al.  Parameters relating to the distributions of planktonic organisms, especially euphausiids in the eastern tropical Pacific , 1979 .

[56]  M. Dagg Some effects of patch food environments on copepods , 1977 .

[57]  T. Dana Development of contemporary Eastern Pacific coral reefs , 1975 .

[58]  A. Longhurst,et al.  Breeding in an Oceanic Population of Pleuroncodes planipes (Crustacea, Galatheidae) , 1971 .

[59]  C. Boyd The Benthic and Pelagic Habitats of the Red Crab, Pleuroncodes planipes , 1967 .

[60]  A. Longhurst,et al.  The Role of Pelagic Crags in the Grazing of Phytoplankton Off Baja California , 1967 .

[61]  R. Nickerson,et al.  Aggregations among juvenile king crabs (Paralithodes camtschatica, Tilesius) Kodiak, Alaska. , 1965, Animal behaviour.

[62]  F. G. Alverson The food of yellowfin and skipjack tunas in the Eastern Tropical Pacific Ocean , 1963 .

[63]  M. Eberhard,et al.  The genus Mansonella (syn. Tetrapetalonema): a new classification. , 1984, Annales de parasitologie humaine et comparee.

[64]  E. Nicol The Feeding Habits of the Galatheidea , 1932, Journal of the Marine Biological Association of the United Kingdom.