Global Precipitation Map Using Satellite-Borne Microwave Radiometers by the GSMaP Project: Production and Validation

This paper documents the production and validation of retrieved rainfall data obtained from satellite-borne microwave radiometers by the Global Satellite Mapping of Precipitation (GSMaP) Project. Using various attributes of precipitation derived from Tropical Rainfall Measuring Mission (TRMM) satellite data, the GSMaP has implemented hydrometeor profiles derived from Precipitation Radar (PR), statistical rain/no-rain classification, and scattering algorithms using polarization-corrected temperatures (PCTs) at 85.5 and 37 GHz. Combined scattering-based surface rainfalls are computed depending on rainfall intensities. PCT85 is not used for stronger rainfalls, because strong depressions of PCT85 are related to tall precipitation-top heights. Therefore, for stronger rainfalls, PCT37 is used, with PCT85 used for weaker rainfalls. With the suspiciously strong rainfalls retrieved from PCT85 deleted, the combined rainfalls correspond well to the PR rain rates over land. The GSMaP algorithm for the TRMM Microwave Imager (TMI) is validated using the TRMM PR, ground radar [Kwajalein (KWAJ) radar and COBRA], and Radar Automated Meteorological Data Acquisition System (AMeDAS) precipitation analysis (RA). Monthly surface rainfalls retrieved from six microwave radiometers (GSMaP_MWR) are compared with the gauge-based dataset. Rain rates retrieved from the TMI (GSMaP_TMI) are in better agreement with the PR estimates over land everywhere except over tropical Africa in the boreal summer. Validation results of the KWAJ radar and COBRA show a good linear relationship for instantaneous rainfall rates, while validation around Japan using the RA shows a good relationship in the warm season. Poor results, connected to weak-precipitation cases, are found in the cold season around Japan.

[1]  R. C. Srivastava,et al.  Snow Size Spectra and Radar Reflectivity , 1970 .

[2]  Eric A. Smith,et al.  Bayesian estimation of precipitating cloud parameters from combined measurements of spaceborne microwave radiometer and radar , 1999, IEEE Trans. Geosci. Remote. Sens..

[3]  Takuji Kubota,et al.  Development of Over-ocean SSM/I Rain Retrieval Algorithm in the GSMaP Project , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[4]  Nazzareno Pierdicca,et al.  Precipitation retrieval from spaceborne microwave radiometers based on maximum a a posteriori probability estimation , 1996, IEEE Trans. Geosci. Remote. Sens..

[5]  Ralph Ferraro,et al.  Special sensor microwave imager derived global rainfall estimates for climatological applications , 1997 .

[6]  H. Michael Goodman,et al.  Precipitation retrieval over land and ocean with the SSM/I - Identification and characteristics of the scattering signal , 1989 .

[7]  C. Kummerow,et al.  The Tropical Rainfall Measuring Mission (TRMM) Sensor Package , 1998 .

[8]  T. N. Krishnamurti,et al.  The status of the tropical rainfall measuring mission (TRMM) after two years in orbit , 2000 .

[9]  Alfred T. C. Chang,et al.  Retrieval of Monthly Rainfall Indices from Microwave Radiometric Measurements Using Probability Distribution Functions , 1991 .

[10]  Yukari N. Takayabu,et al.  Spectral representation of rain profiles and diurnal variations observed with TRMM PR over the equatorial area , 2002 .

[11]  K. Okamoto,et al.  Rain profiling algorithm for the TRMM precipitation radar , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[12]  E. Anagnostou,et al.  Overland Precipitation Estimation from TRMM Passive Microwave Observations , 2001 .

[13]  J. Marshall,et al.  THE DISTRIBUTION OF RAINDROPS WITH SIZE , 1948 .

[14]  Christian D. Kummerow,et al.  A Passive Microwave Technique for Estimating Rainfall and Vertical Structure Information from Space. Part I: Algorithm Description , 1994 .

[15]  Toshio Iguchi,et al.  Rainfall-Induced Changes in Actual Surface Backscattering Cross Sections and Effects on Rain-Rate Estimates by Spaceborne Precipitation Radar , 2007 .

[16]  Dong-Bin Shin,et al.  The Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors , 2001 .

[17]  Misako Kachi,et al.  Comparison of Rainfall Products Derived from TRMM Microwave Imager and Precipitation Radar , 2002 .

[18]  K. Okamoto,et al.  Field campaign of observing precipitation in the 2004 rainy season of Okinawa, Japan , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[19]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[20]  Grant W. Petty,et al.  Validation and Intercomparison of SSM/I Rain-Rate Retrieval Methods over the Continental United States , 1998 .

[21]  E. A. Smith,et al.  Design of an inversion-based precipitation proflie retrieval algorithm using an explicit cloud model for initial guess microphysics , 1994 .

[22]  Katsuhiko Nishikawa,et al.  Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite , 2001, IEEE Trans. Geosci. Remote. Sens..

[23]  Min-Jeong Kim,et al.  Validation of Maritime Rainfall Retrievals from the TRMM Microwave Radiometer , 2004 .

[24]  Shoichi Shige,et al.  Spectral Retrieval of Latent Heating Profiles from TRMM PR Data. Part I: Development of a Model-Based Algorithm , 2004 .

[25]  Kazumasa Aonashi,et al.  An over-ocean precipitation retrieval using SSM/I multichannel brightness temperatures , 1996 .

[26]  Ken'ichi Okamoto,et al.  A Short History of the TRMM Precipitation Radar , 2003 .

[27]  P. Bauer Over-Ocean Rainfall Retrieval from Multisensor Data of the Tropical Rainfall Measuring Mission. Part I: Design and Evaluation of Inversion Databases , 2001 .

[28]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[29]  Bart Geerts,et al.  Regional and Diurnal Variability of the Vertical Structure of Precipitation Systems in Africa Based on Spaceborne Radar Data , 2005 .

[30]  William S. Olson,et al.  Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part I: Improved Method and Uncertainties , 2006 .

[31]  Peter Bauer,et al.  Bayesian algorithm for microwave-based precipitation retrieval: description and application to TMI measurements over ocean , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Shinta Seto Biases in surface reference estimates by the TRMM PR standard algorithm , 2005 .

[33]  Eric A. Smith,et al.  Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part II: Evaluation of Estimates Using Independent Data , 2006 .

[34]  Jeffrey D. Hawkins,et al.  Interpretation of TRMM TMI Images of Tropical Cyclones , 2002 .

[35]  Ralph Ferraro,et al.  Next generation of NOAA/NESDIS TMI, SSM/I, and AMSR‐E microwave land rainfall algorithms , 2003 .

[36]  Eric A. Smith,et al.  Simulation of microwave brightness temperatures of an evolving hailstorm at SSM/I frequencies , 1990 .

[37]  Jeffrey A. Jones,et al.  A Hybrid Surface Reference Technique and Its Application to the TRMM Precipitation Radar , 2004 .

[38]  Riko Oki,et al.  Simulation of sampling error of average rainfall rates in space and time by five satellites using radar‐AMeDAS composites , 2006 .

[39]  Shinta Seto,et al.  A REVIEW OF TRMM/PR RAIN RATE RETRIEVAL ALGORITHM BIASES CAUSED BY SURFACE REFERENCE TECHNIQUE , 2006 .

[40]  J. Curry,et al.  Retrieval of precipitation from satellite microwave measurement using both emission and scattering , 1992 .

[41]  Riko Oki,et al.  TRMM Sampling of Radar–AMeDAS Rainfall Using the Threshold Method , 1997 .

[42]  Keiji Imaoka,et al.  The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA's contribution to the EOS for global energy and water cycle studies , 2003, IEEE Trans. Geosci. Remote. Sens..

[43]  Kenji Nakamura,et al.  Comparison of Rain Rates over the Ocean Derived from TRMM Microwave Imager and Precipitation Radar , 2003 .

[44]  G. Petty Physical retrievals of over-ocean rain rate from multichannel microwave imagery. Part II: Algorithm implementation , 1994 .

[45]  Fumie A. Furuzawa,et al.  Differences of Rainfall Estimates over Land by Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and TRMM Microwave Imager (TMI)—Dependence on Storm Height , 2005 .

[46]  Robert A. Houze,et al.  Comparison of Radar Data from the TRMM Satellite and Kwajalein Oceanic Validation Site , 2000 .

[47]  Nobuhiro Takahashi,et al.  Biases in the standard rain rate product by the TRMM microwave radiometer over land , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[48]  Peter Bauer,et al.  Over-Ocean Rainfall Retrieval from Multisensor Data of the Tropical Rainfall Measuring Mission. Part II: Algorithm Implementation , 2001 .

[49]  Nobuhiro Takahashi,et al.  The global satellite mapping of precipitation (GSMaP) project , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[50]  Ralph Ferraro,et al.  Microwave Rainfall Estimation over Coasts , 2005 .

[51]  Nobuhiro Takahashi,et al.  Introduction of a melting layer model to a rain retrieval algorithm for microwave radiometers , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[52]  Christopher R. Williams,et al.  Uncertainties in Oceanic Radar Rain Maps at Kwajalein and Implications for Satellite Validation , 2004 .

[53]  Toshio Iguchi,et al.  Validation of rainfall estimates from the TRMM precipitation radar and microwave imager using a radiative transfer model: 1. Comparison of the version‐5 and ‐6 products , 2006 .

[54]  Nobuhiro Takahashi,et al.  Development of a new C-band polarimetric Doppler weather radar in Japan , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[55]  Jeffrey A. Jones,et al.  Use of the Surface Reference Technique for Path Attenuation Estimates from the TRMM Precipitation Radar , 2000 .

[56]  Riko Oki,et al.  Sampling simulation of TRMM rainfall estimation using radar-AMeDAS composites , 1994 .

[57]  Christian D. Kummerow,et al.  Rainfall Climate Regimes: The Relationship of Regional TRMM Rainfall Biases to the Environment , 2006 .

[58]  Guosheng Liu,et al.  A Fast and Accurate Model for Microwave Radiance Calculations , 1998 .

[59]  J. Janowiak,et al.  CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution , 2004 .

[60]  N. Grody Classification of snow cover and precipitation using the special sensor microwave imager , 1991 .

[61]  Nobuhiro Takahashi,et al.  Rain/No-Rain Classification Methods for Microwave Radiometer Observations over Land Using Statistical Information for Brightness Temperatures under No-Rain Conditions , 2005 .

[62]  Guosheng Liu,et al.  Passive Microwave Precipitation Retrievals Using TMI during the Baiu Period of 1998. Part I: Algorithm Description and Validation , 2000 .

[63]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[64]  N. Grody Remote Sensing of the Atmosphere from Satellites Using Microwave Radiometry , 1993 .

[65]  K. Okamoto,et al.  Rain profiling algorithm for the TRMM precipitation radar , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.