Ultra-wideband mid-infrared supercontinuum generation in liquid-filled circular photonic crystal fiber

Abstract. We numerically demonstrate ultra-wideband mid-infrared supercontinuum (SC) generation in a liquid-filled arsenic–selenide circular photonic crystal fiber (C-PCF). The inner ring air-holes are filled with two different nonlinear liquids: chloroform (CHCl3) and carbon disulfide (CS2). Based on simulation results, we show that ultra-wideband SC spectra spanning from 1 to 20  μm can be achieved using only 5-mm long CHCl3 liquid filling with a pump optical pulse of 10-kW peak power at the wavelength of 2.55  μm. In addition, using 5-kW peak power, SC spectrum spanning up to 12  μm is obtained in the case of the CS2 liquid-filled C-PCF.

[1]  Majid Ebnali-Heidari,et al.  Proposal for Supercontinuum Generation by Optofluidic Infiltrated Photonic Crystal Fibers , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  Harald Giessen,et al.  Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation. , 2006, Optics express.

[3]  Xiang Zhu,et al.  THE OPTICAL KERR EFFECT OF LIQUIDS , 2006 .

[4]  Mourad Zghal,et al.  Numerical investigation of an ultra-broadband coherent mid-infrared supercontinuum in a chalcogenide AsSe2-As2S5 multimaterial photonic crystal fiber , 2018, Journal of the Optical Society of America B.

[5]  B J Eggleton,et al.  Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers. , 2010, Optics express.

[6]  Guangming Tao,et al.  Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures. , 2015, Optics express.

[7]  Jean-Luc Adam,et al.  Fabrication of highly homogeneous As2Se3 glass under argon flow , 2011 .

[8]  Takenobu Suzuki,et al.  Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber , 2009 .

[9]  Tonglei Cheng,et al.  Ultrabroad supercontinuum generation through filamentation in tellurite glass , 2013 .

[10]  S. Kawanishi,et al.  Optical properties of a low-loss polarization-maintaining photonic crystal fiber. , 2001, Optics express.

[11]  Fei Wang,et al.  Selective filling of photonic crystal fibers using focused ion beam milled microchannels. , 2011, Optics express.

[12]  Inseok Seo,et al.  Preparation and characterization of the As40Se60 and As38.8Se61.2 glasses with high quality for the single mode IR glass fiber , 2015 .

[13]  Kaisar R. Khan,et al.  Supercontinuum generation in highly nonlinear hexagonal photonic crystal fiber at very low power , 2015 .

[14]  Xiang Shen,et al.  Mid‐infrared supercontinuum covering 2.0–16 μm in a low‐loss telluride single‐mode fiber , 2017 .

[15]  Valentin Gapontsev,et al.  Multi-Watt mid-IR femtosecond polycrystalline Cr(2+):ZnS and Cr(2+):ZnSe laser amplifiers with the spectrum spanning 2.0-2.6 µm. , 2016, Optics express.

[16]  Daniel L Marks,et al.  Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography. , 2002, Optics letters.

[17]  Charles A. Brackett,et al.  Dense Wavelength Division Multiplexing Networks: Principles and Applications , 1990, IEEE J. Sel. Areas Commun..

[18]  B. M. A. Rahman,et al.  Design and modeling of dispersion-engineered all-chalcogenide triangular-core fiber for mid-infrared-region supercontinuum generation , 2018 .

[19]  Anders Bjarklev,et al.  Selective filling of Photonic Crystal Fibres , 2005 .

[20]  Jun Ye,et al.  Colloquium: Femtosecond optical frequency combs , 2003 .

[21]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[22]  Ole Bang,et al.  Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers. , 2007, Optics express.

[23]  M. Zahniser,et al.  A tunable diode laser system for the remote sensing of on-road vehicle emissions , 1998 .

[24]  Bora Ung,et al.  Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared. , 2010, Optics express.

[25]  Vladimir Shiryaev,et al.  Trends and prospects for development of chalcogenide fibers for mid-infrared transmission , 2013 .

[26]  Stanislav Zvanovec,et al.  Circular Lattice Photonic Crystal Fiber for Mid-IR Supercontinuum Generation , 2016, IEEE Photonics Technology Letters.

[27]  Wu Yuan,et al.  2–10 μm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber , 2013, 1308.5910.

[28]  Tonglei Cheng,et al.  Fabrication and characterization of a hybrid four-hole AsSe₂-As₂S₅ microstructured optical fiber with a large refractive index difference. , 2014, Optics express.

[29]  M. S. Alam,et al.  Design of an elliptical air-hole dual-core photonic crystal fiber for over two octaves spanning supercontinuum generation , 2019 .

[30]  Ravindra Kumar Sinha,et al.  Ultra broadband mid-IR supercontinuum generation in Ge11.5As24Se64.5 based chalcogenide graded-index photonic crystal fiber: design and analysis. , 2016, Applied optics.

[31]  Hui Zhang,et al.  Supercontinuum generation in chloroform-filled photonic crystal fibers , 2010 .

[32]  Shixun Dai,et al.  Midinfrared Supercontinuum Generation in As2Se3–As2S3 Chalcogenide Glass Fiber With High NA , 2017, Journal of Lightwave Technology.

[33]  H. Giessen,et al.  Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2-2.4 μm range. , 2015, Optics express.

[34]  A. Samoc,et al.  Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared , 2003 .

[35]  Tonglei Cheng,et al.  Mid-infrared supercontinuum generation spanning 2.0 to 15.1  μm in a chalcogenide step-index fiber. , 2016, Optics letters.