Alpha B- and βA3-crystallins containing d-aspartic acids exist in a monomeric state.

[1]  K. Lampi,et al.  Lens β-crystallins: the role of deamidation and related modifications in aging and cataract. , 2014, Progress in biophysics and molecular biology.

[2]  N. Fujii,et al.  A Rapid, Comprehensive Liquid Chromatography-Mass Spectrometry (LC-MS)-based Survey of the Asp Isomers in Crystallins from Human Cataract Lenses* , 2012, The Journal of Biological Chemistry.

[3]  Maria M. Reif,et al.  A stereochemical switch in the aDrs model system, a candidate for a functional amyloid , 2012, Archives of biochemistry and biophysics.

[4]  N. Fujii,et al.  Simultaneous stereoinversion and isomerization at the Asp-4 residue in βB2-crystallin from the aged human eye lenses. , 2011, Biochemistry.

[5]  K. Fukui,et al.  Specific racemization of heavy-chain cysteine-220 in the hinge region of immunoglobulin gamma 1 as a possible cause of degradation during storage. , 2011, Analytical chemistry.

[6]  R. Truscott,et al.  Racemisation and human cataract. d-Ser, d-Asp/Asn and d-Thr are higher in the lifelong proteins of cataract lenses than in age-matched normal lenses , 2011, AGE.

[7]  O. Srivastava,et al.  A serine-type protease activity of human lens βA3-crystallin is responsible for its autodegradation , 2010, Molecular vision.

[8]  K. Lampi,et al.  Solvent accessibility of betaB2-crystallin and local structural changes due to deamidation at the dimer interface. , 2010, Experimental eye research.

[9]  M. Fukayama,et al.  Accumulation of D‐β‐Aspartic Acid‐Containing Proteins in Age‐Related Ocular Diseases , 2010, Chemistry & biodiversity.

[10]  David Eisenberg,et al.  Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function , 2010, Protein science : a publication of the Protein Society.

[11]  N. Fujii,et al.  Influence of lβ-, dα- and dβ-Asp isomers of the Asp-76 residue on the properties of αA-crystallin 70–88 peptide , 2010, Amino Acids.

[12]  P. Santhoshkumar,et al.  Lens aging: effects of crystallins. , 2009, Biochimica et biophysica acta.

[13]  K. Lampi,et al.  Deamidation destabilizes and triggers aggregation of a lens protein, βA3‐crystallin , 2008, Protein science : a publication of the Protein Society.

[14]  P. Santhoshkumar,et al.  Anti-chaperone βA3/A1102-117 peptide interacting sites in human αB-crystallin , 2008, Molecular vision.

[15]  S. Hildebrandt Be rapid , 2007 .

[16]  R. Jaenicke,et al.  Mutation of interfaces in domain‐swapped human βB2‐crystallin , 2007, Protein science : a publication of the Protein Society.

[17]  P A Pevzner,et al.  Age-related changes in human crystallins determined from comparative analysis of post-translational modifications in young and aged lens: does deamidation contribute to crystallin insolubility? , 2006, Journal of proteome research.

[18]  K. Lampi,et al.  Deamidation in Human Lens βB2-Crystallin Destabilizes the Dimer , 2006 .

[19]  K. Lampi,et al.  Deamidation in human lens betaB2-crystallin destabilizes the dimer. , 2006, Biochemistry.

[20]  Christine Slingsby,et al.  Ageing and vision: structure, stability and function of lens crystallins. , 2004, Progress in biophysics and molecular biology.

[21]  N. Fujii,et al.  The presence of D-beta-aspartic acid-containing peptides in elastic fibers of sun-damaged skin: a potent marker for ultraviolet-induced skin aging. , 2002, Biochemical and biophysical research communications.

[22]  D. Smith,et al.  The major in vivo modifications of the human water-insoluble lens crystallins are disulfide bonds, deamidation, methionine oxidation and backbone cleavage. , 2000, Experimental eye research.

[23]  K. Harada,et al.  D-amino acid formation induced by a chiral field within a human lens protein during aging. , 1999, Biochemical and biophysical research communications.

[24]  Jean B. Smith,et al.  Deamidation and Disulfide Bonding in Human Lens γ-Crystallins , 1998 .

[25]  K. Lampi,et al.  Age-related changes in human lens crystallins identified by HPLC and mass spectrometry. , 1998, Experimental eye research.

[26]  D. Smith,et al.  Deamidation and disulfide bonding in human lens gamma-crystallins. , 1998, Experimental eye research.

[27]  K. Harada,et al.  Simultaneous stereoinversion and isomerization at specific aspartic acid residues in alpha A-crystallin from human lens. , 1994, Journal of biochemistry.

[28]  K. Harada,et al.  Simultaneous racemization and isomerization at specific aspartic acid residues in alpha B-crystallin from the aged human lens. , 1994, Biochimica et biophysica acta.

[29]  M J Ball,et al.  Structural alterations in the peptide backbone of beta-amyloid core protein may account for its deposition and stability in Alzheimer's disease. , 1993, The Journal of biological chemistry.

[30]  S. Clarke,et al.  Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. , 1987, The Journal of biological chemistry.