Multiple zeta values and Rota--Baxter algebras

We study multiple zeta values and their generalizations from the point of view of Rota--Baxter algebras. We obtain a general framework for this purpose and derive relations on multiple zeta values from relations in Rota--Baxter algebras.

[1]  Michael E. Hoffman,et al.  Multiple harmonic series. , 1992 .

[2]  Li Guo,et al.  On products and duality of binary, quadratic, regular operads , 2004 .

[3]  Pierre Cartier,et al.  On the structure of free baxter algebras , 1972 .

[4]  G. Baxter,et al.  AN ANALYTIC PROBLEM WHOSE SOLUTION FOLLOWS FROM A SIMPLE ALGEBRAIC IDENTITY , 1960 .

[5]  U MichaelE.Hoffman The Algebra of Multiple Harmonic Series , 1997 .

[6]  K. Ebrahimi-Fard Loday-Type Algebras and the Rota–Baxter Relation , 2002 .

[7]  Li Guo,et al.  Integrable renormalization I: The ladder case , 2004, hep-th/0402095.

[8]  Li Guo Baxter Algebras, Stirling Numbers and Partitions , 2004 .

[9]  Li Guo,et al.  On Free Baxter Algebras: Completions and the Internal Construction , 2000 .

[10]  D. Bradley Multiple $q$-Zeta Values , 2004, math/0402093.

[11]  Li Guo,et al.  Baxter Algebras and Hopf Algebras , 2003 .

[12]  Alain Connes,et al.  Renormalization in Quantum Field Theory and the Riemann–Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem , 2000 .

[13]  Integrable Renormalization II: The General Case , 2004, hep-th/0403118.

[14]  F. Spitzer A Combinatorial Lemma and its Application to Probability Theory , 1956 .

[15]  Gian-Carlo Rota,et al.  Baxter algebras and combinatorial identities. II , 1969 .

[16]  Jonathan M. Borwein,et al.  Special values of multiple polylogarithms , 1999, math/9910045.

[17]  D. J. Broadhurst,et al.  Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops , 1996, hep-th/9609128.