Infrastructure shortage and aging are worldwide issues. Australia, in particular, faces unique challenges in maintaining infrastructures such as roadways and bridges. Corrosion is the primary cause of failure in steel bridges, and is minimised by painting the steel structure. Stripping of rust and deteriorated paint by grit-blasting is an effective and practical method. However, grit-blasting operation is extremely labour intensive and hazardous. It is one of the biggest expenditure items in bridge maintenance operations. Robotics technologies can provide effective solutions to assist bridge maintenance workers in grit blasting. Since 2005, the NSW Roads & Traffic Authority (RTA) and the Centre of Excellence for Autonomous Systems at the University of Technology, Sydney have been working together in developing a robotic system for assisting bridge maintenance workers, with the ultimate objective of preventing human exposure to hazardous and dangerous dust containing rust, paint particles and lead, relieving human workers from labor intensive tasks, and reducing costs associated with bridge maintenance. A prototype robotic system has been developed and tested in both lab setup and on-site. Many engineering issues have been identified for deploying such a system in the field. This paper will present these issues and discuss the solutions.