Certified reduced basis model validation: A frequentistic uncertainty framework

Abstract We introduce a frequentistic validation framework for assessment — acceptance or rejection — of the consistency of a proposed parametrized partial differential equation model with respect to (noisy) experimental data from a physical system. Our method builds upon the Hotelling T2 statistical hypothesis test for bias first introduced by Balci and Sargent in 1984 and subsequently extended by McFarland and Mahadevan (2008). Our approach introduces two new elements: a spectral representation of the misfit which reduces the dimensionality and variance of the underlying multivariate Gaussian but without introduction of the usual regression assumptions; a certified (verified) reduced basis approximation — reduced order model — which greatly accelerates computational performance but without any loss of rigor relative to the full (finite element) discretization. We illustrate our approach with examples from heat transfer and acoustics, both based on synthetic data. We demonstrate that we can efficiently identify possibility regions that characterize parameter uncertainty; furthermore, in the case that the possibility region is empty, we can deduce the presence of “unmodeled physics” such as cracks or heterogeneities.

[1]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[2]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[3]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[4]  Y. L. Tong The multivariate normal distribution , 1989 .

[5]  N. Draper,et al.  Applied Regression Analysis. , 1967 .

[6]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[7]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[8]  John W. Peterson,et al.  A high-performance parallel implementation of the certified reduced basis method , 2011 .

[9]  A. Patera,et al.  A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations , 2005 .

[10]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[11]  Benjamin S. Kirk,et al.  Library for Parallel Adaptive Mesh Refinement / Coarsening Simulations , 2006 .

[12]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[13]  Franklin A. Graybill,et al.  Introduction to The theory , 1974 .

[14]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[15]  R. Sargent,et al.  Validation of Simulation Models via Simultaneous Confidence Intervals , 1984 .

[16]  Michel Loève,et al.  Probability Theory I , 1977 .

[17]  Anthony T. Patera,et al.  A Certified Reduced Basis Method for the Fokker--Planck Equation of Dilute Polymeric Fluids: FENE Dumbbells in Extensional Flow , 2010, SIAM J. Sci. Comput..

[18]  A. Noor Recent advances in reduction methods for nonlinear problems. [in structural mechanics , 1981 .

[19]  Kevin J. Dowding,et al.  Formulation of the thermal problem , 2008 .

[20]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[21]  D. Rovas,et al.  A Posteriori Error Bounds for Reduced-Basis Approximation of Parametrized Noncoercive and Nonlinear Elliptic Partial Differential Equations , 2003 .

[22]  P. Stern,et al.  Automatic choice of global shape functions in structural analysis , 1978 .

[23]  Gianluigi Rozza,et al.  Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Parabolic PDEs: Application to Real‐Time Bayesian Parameter Estimation , 2010 .

[24]  T. A. Porsching,et al.  The reduced basis method for initial value problems , 1987 .

[25]  Victor Chew,et al.  Confidence, Prediction, and Tolerance Regions for the Multivariate Normal Distribution , 1966 .

[26]  Sankaran Mahadevan,et al.  Multivariate significance testing and model calibration under uncertainty , 2008 .

[27]  Yvon Maday,et al.  The Reduced Basis Element Method: Application to a Thermal Fin Problem , 2004, SIAM J. Sci. Comput..

[28]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[29]  Laura Painton Swiler,et al.  Calibration, validation, and sensitivity analysis: What's what , 2006, Reliab. Eng. Syst. Saf..

[30]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[31]  Maria Rosa Valluzzi,et al.  IR thermography for interface analysis of FRP laminates externally bonded to RC beams , 2009 .

[32]  Anthony T. Patera,et al.  A Static condensation Reduced Basis Element method: approximation and a posteriori error estimation , 2013 .

[33]  Philip B. Stark,et al.  A Primer of Frequentist and Bayesian Inference in Inverse Problems , 2010 .

[34]  Anthony T. Patera,et al.  Inverse identification of thermal parameters using reduced-basis method , 2005 .

[35]  Ying Xiong,et al.  A better understanding of model updating strategies in validating engineering models , 2009 .

[36]  Werner C. Rheinboldt,et al.  On the Error Behavior of the Reduced Basis Technique for Nonlinear Finite Element Approximations , 1983 .

[37]  Bernard Haasdonk,et al.  Reduced Basis Method for Finite Volume Approximations of Parametrized Evolution Equations , 2006 .

[38]  Nicholas Zabaras,et al.  Using Bayesian statistics in the estimation of heat source in radiation , 2005 .

[39]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..