Dynamic freeze casting for the production of porous titanium (Ti) scaffolds.

[1]  Hyoun‐Ee Kim,et al.  Improving the strength and biocompatibility of porous titanium scaffolds by creating elongated pores coated with a bioactive, nanoporous TiO2 layer , 2010 .

[2]  J. Weng,et al.  Fabrication of porous titanium implants with biomechanical compatibility , 2009 .

[3]  Hyoun‐Ee Kim,et al.  Fabrication of porous titanium scaffolds with high compressive strength using camphene-based freeze casting , 2009 .

[4]  Hyun-Do Jung,et al.  Fabrication of titanium scaffolds with porosity and pore size gradients by sequential freeze casting , 2009 .

[5]  Hyoun‐Ee Kim,et al.  Porous titanium (Ti) scaffolds by freezing TiH2/camphene slurries , 2008 .

[6]  Abhay S Pandit,et al.  Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. , 2008, Biomaterials.

[7]  Hyoun‐Ee Kim,et al.  Aligned porous alumina ceramics with high compressive strengths for bone tissue engineering , 2008 .

[8]  S. Deville Freeze‐Casting of Porous Ceramics: A Review of Current Achievements and Issues , 2008, 1710.04201.

[9]  Abhay Pandit,et al.  Fabrication methods of porous metals for use in orthopaedic applications. , 2006, Biomaterials.

[10]  Tadashi Kokubo,et al.  Mechanical properties and osteoconductivity of porous bioactive titanium. , 2005, Biomaterials.

[11]  P. Chu,et al.  Surface modification of titanium, titanium alloys, and related materials for biomedical applications , 2004 .

[12]  M. Mabuchi,et al.  Processing and mechanical properties of autogenous titanium implant materials , 2002, Journal of materials science. Materials in medicine.

[13]  H. Rack,et al.  Titanium alloys in total joint replacement--a materials science perspective. , 1998, Biomaterials.