On Propagation in Loop Quantum Gravity
暂无分享,去创建一个
[1] Quantum spin dynamics (QSD): II. The kernel of the Wheeler - DeWitt constraint operator , 1996, gr-qc/9606090.
[2] L. Glaser,et al. Quantum Gravity on the Computer: Impressions of a Workshop , 2018, Universe.
[3] R. Laflamme,et al. Quantum spacetime on a quantum simulator , 2017, Communications Physics.
[4] J. Mielczarek. Prelude to Simulations of Loop Quantum Gravity on Adiabatic Quantum Computers , 2021 .
[5] E. Álvarez,et al. Quantum Gravity , 2004, gr-qc/0405107.
[6] Quantum spin dynamics: VIII. The master constraint , 2005, gr-qc/0510011.
[7] AndreescuAndrica. An Introduction to Diophantine Equations , 2002 .
[8] M. Varadarajan. Euclidean LQG dynamics: an electric shift in perspective , 2021, 2101.03115.
[9] Quantization of diffeomorphism invariant theories of connections with local degrees of freedom , 1995, gr-qc/9504018.
[10] Casey Tomlin,et al. Towards an Anomaly-Free Quantum Dynamics for a Weak Coupling Limit of Euclidean Gravity , 2012, 1210.6869.
[11] Uniqueness of Diffeomorphism Invariant States on Holonomy–Flux Algebras , 2005, gr-qc/0504147.
[12] Quantum Spin Dynamics (QSD) , 1996, gr-qc/9606089.
[13] K. Giesel,et al. Scalar material reference systems and loop quantum gravity , 2012, 1206.3807.
[14] T. Thiemann. Quantum spin dynamics (QSD): III. Quantum constraint algebra and physical scalar product in quantum , 1998 .
[15] Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity , 1996, gr-qc/9606088.
[16] B. Dittrich. A First Course in Loop Quantum Gravity , 2012 .
[17] A. Ashtekar,et al. Gravitational Dynamics—A Novel Shift in the Hamiltonian Paradigm , 2020, Universe.
[18] J. Lewandowski,et al. Symmetric scalar constraint for loop quantum gravity , 2014, 1410.5276.
[19] S. Steinhaus,et al. Decorated tensor network renormalization for lattice gauge theories and spin foam models , 2014, 1409.2407.
[20] Christian Fleischhack. Communications in Mathematical Physics Representations of the Weyl Algebra in Quantum Geometry , 2008 .
[21] J. W. Thomas. Numerical Partial Differential Equations: Finite Difference Methods , 1995 .
[22] M. Varadarajan. Towards an Anomaly-Free Quantum Dynamics for a Weak Coupling Limit of Euclidean Gravity: Diffeomorphism Covariance , 2012, 1210.6877.
[23] Alok Laddha. Hamiltonian constraint in Euclidean LQG revisited: First hints of off-shell Closure , 2014, 1401.0931.
[24] M. Varadarajan. Quantum propagation in Smolin’s weak coupling limit of 4D Euclidean gravity , 2019, Physical Review D.
[25] M. Varadarajan. Propagation in polymer parameterised field theory , 2016, 1609.06034.
[26] Claus Kiefer,et al. Modern Canonical Quantum General Relativity , 2008 .
[27] A. Ashtekar,et al. Background independent quantum gravity: a status report , 2004 .
[28] T. Thiemann. Canonical Quantum Gravity, Constructive QFT, and Renormalisation , 2020, Frontiers in Physics.
[29] Towards the QFT on curved spacetime limit of QGR: I. A general scheme , 2002, gr-qc/0207030.
[30] Thomas Fischbacher,et al. SO(8) supergravity and the magic of machine learning , 2019, Journal of High Energy Physics.
[31] Muxin Han,et al. Loop quantum gravity on dynamical lattice and improved cosmological effective dynamics with inflaton , 2021, Physical Review D.
[32] T. Thiemann,et al. Simplification of the spectral analysis of the volume operator in loop quantum gravity , 2004, gr-qc/0405060.
[33] Michael Creutz,et al. Quarks, Gluons and Lattices , 1984 .
[34] L. Smolin. The classical limit and the form of the hamiltonian constraint in non-perturbative quantum general relativity , 2008 .