The resource theory of stabilizer quantum computation
暂无分享,去创建一个
Victor Veitch | Daniel Gottesman | Seyed Ali Hamed Mousavian | Joseph Emerson | J. Emerson | D. Gottesman | Victor Veitch | S. A. Hamed Mousavian | S. Mousavian
[1] K. Życzkowski,et al. Negativity of the Wigner function as an indicator of non-classicality , 2004, quant-ph/0406015.
[2] F. Brandão,et al. A Generalization of Quantum Stein’s Lemma , 2009, 0904.0281.
[3] Daniel Gottesman,et al. Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.
[4] R. Spekkens,et al. The resource theory of quantum reference frames: manipulations and monotones , 2007, 0711.0043.
[5] Necessity of negativity in quantum theory , 2009, 0910.3198.
[6] S. Bravyi,et al. Magic-state distillation with low overhead , 2012, 1209.2426.
[7] Christopher Ferrie,et al. Frame representations of quantum mechanics and the necessity of negativity in quasi-probability representations , 2007, 0711.2658.
[8] D. Browne,et al. Bound states for magic state distillation in fault-tolerant quantum computation. , 2009, Physical review letters.
[9] D. Gross. Hudson's theorem for finite-dimensional quantum systems , 2006, quant-ph/0602001.
[10] E. Lieb,et al. A Fundamental Property of Quantum-Mechanical Entropy , 1973 .
[11] G. Vidal,et al. Computable measure of entanglement , 2001, quant-ph/0102117.
[12] D. Browne,et al. Qutrit magic state distillation , 2012, 1202.2326.
[13] M. Mariantoni,et al. Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.
[14] Peter W. Shor,et al. Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.
[15] Discrete phase space based on finite fields , 2004, quant-ph/0401155.
[16] R. Spekkens,et al. Measuring the quality of a quantum reference frame: The relative entropy of frameness , 2009, 0901.0943.
[17] M. Horodecki,et al. QUANTUMNESS IN THE CONTEXT OF) RESOURCE THEORIES , 2012, 1209.2162.
[18] M. Lewenstein,et al. Quantum Entanglement , 2020, Quantum Mechanics.
[19] J. Emerson,et al. Corrigendum: Negative quasi-probability as a resource for quantum computation , 2012, 1201.1256.
[20] L. Ioffe,et al. Physical implementation of protected qubits , 2012, Reports on progress in physics. Physical Society.
[21] Michal Horodecki,et al. LETTER TO THE EDITOR: On asymptotic continuity of functions of quantum states , 2005 .
[22] Bryan Eastin,et al. Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.
[23] D. Gross,et al. Evenly distributed unitaries: On the structure of unitary designs , 2006, quant-ph/0611002.
[24] W. Wootters. A Wigner-function formulation of finite-state quantum mechanics , 1987 .
[25] David Gross,et al. Non-negative Wigner functions in prime dimensions , 2007 .
[26] A. Kitaev,et al. Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.
[27] M. Horodecki,et al. Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.
[28] J Eisert,et al. Positive Wigner functions render classical simulation of quantum computation efficient. , 2012, Physical review letters.
[29] Bryan Eastin,et al. Distilling one-qubit magic states into Toffoli states , 2012, 1212.4872.
[30] M. Horodecki,et al. Reversible transformations from pure to mixed states and the unique measure of information , 2002, quant-ph/0212019.
[31] D. Gottesman. The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.
[32] Charles H. Bennett,et al. Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.
[33] Charles H. Bennett,et al. Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[34] A. Peres. All the Bell Inequalities , 1998, quant-ph/9807017.
[35] P. Horodecki,et al. Nonadditivity of quantum and classical capacities for entanglement breaking multiple-access channels and the butterfly network , 2009, 0906.1305.
[36] D. Gottesman. An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.
[37] William K. Wootters,et al. Discrete phase space based on finite fields (23 pages) , 2004 .
[38] Victor Veitch,et al. Contextuality supplies the ‘magic’ for quantum computation , 2014, Nature.
[39] V. Vedral,et al. Entanglement measures and purification procedures , 1997, quant-ph/9707035.
[40] Nathan Wiebe,et al. Efficient simulation scheme for a class of quantum optics experiments with non-negative Wigner representation , 2012, 1210.1783.
[41] M. Plenio. Logarithmic negativity: a full entanglement monotone that is not convex. , 2005, Physical review letters.
[42] Jonathan Oppenheim,et al. Are the laws of entanglement theory thermodynamical? , 2002, Physical review letters.
[43] E. Knill,et al. Theory of quantum computation , 2000, quant-ph/0010057.
[44] Mark Howard,et al. Qudit versions of the qubit "pi-over-eight" gate , 2012, 1206.1598.
[45] M. Piani. Relative entropy of entanglement and restricted measurements. , 2009, Physical review letters.
[46] W. Munro,et al. Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.
[47] J. Mayer,et al. On the Quantum Correction for Thermodynamic Equilibrium , 1947 .
[48] Ben Reichardt,et al. Quantum Universality from Magic States Distillation Applied to CSS Codes , 2005, Quantum Inf. Process..
[49] Earl T. Campbell,et al. Catalysis and activation of magic states in fault-tolerant architectures , 2010, 1010.0104.
[50] Isaac L. Chuang,et al. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.
[51] D. Browne,et al. Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes , 2012, 1205.3104.
[52] Stephen D. Bartlett,et al. Non-negative subtheories and quasiprobability representations of qubits , 2012, 1203.2652.
[53] Cody Jones,et al. Distillation protocols for Fourier states in quantum computing , 2013, Quantum Inf. Comput..