The resource theory of stabilizer quantum computation

Recent results on the non-universality of fault-tolerant gate sets underline the critical role of resource states, such as magic states, to power scalable, universal quantum computation. Here we develop a resource theory, analogous to the theory of entanglement, that is relevant for fault-tolerant stabilizer computation. We introduce two quantitative measures?monotones?for the amount of non-stabilizer resource. As an application we give absolute bounds on the efficiency of magic state distillation. One of these monotones is the sum of the negative entries of the discrete Wigner representation of a quantum state, thereby resolving a long-standing open question of whether the degree of negativity in a quasi-probability representation is an operationally meaningful indicator of quantum behavior.

[1]  K. Życzkowski,et al.  Negativity of the Wigner function as an indicator of non-classicality , 2004, quant-ph/0406015.

[2]  F. Brandão,et al.  A Generalization of Quantum Stein’s Lemma , 2009, 0904.0281.

[3]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[4]  R. Spekkens,et al.  The resource theory of quantum reference frames: manipulations and monotones , 2007, 0711.0043.

[5]  Necessity of negativity in quantum theory , 2009, 0910.3198.

[6]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[7]  Christopher Ferrie,et al.  Frame representations of quantum mechanics and the necessity of negativity in quasi-probability representations , 2007, 0711.2658.

[8]  D. Browne,et al.  Bound states for magic state distillation in fault-tolerant quantum computation. , 2009, Physical review letters.

[9]  D. Gross Hudson's theorem for finite-dimensional quantum systems , 2006, quant-ph/0602001.

[10]  E. Lieb,et al.  A Fundamental Property of Quantum-Mechanical Entropy , 1973 .

[11]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[12]  D. Browne,et al.  Qutrit magic state distillation , 2012, 1202.2326.

[13]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[14]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[15]  Discrete phase space based on finite fields , 2004, quant-ph/0401155.

[16]  R. Spekkens,et al.  Measuring the quality of a quantum reference frame: The relative entropy of frameness , 2009, 0901.0943.

[17]  M. Horodecki,et al.  QUANTUMNESS IN THE CONTEXT OF) RESOURCE THEORIES , 2012, 1209.2162.

[18]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[19]  J. Emerson,et al.  Corrigendum: Negative quasi-probability as a resource for quantum computation , 2012, 1201.1256.

[20]  L. Ioffe,et al.  Physical implementation of protected qubits , 2012, Reports on progress in physics. Physical Society.

[21]  Michal Horodecki,et al.  LETTER TO THE EDITOR: On asymptotic continuity of functions of quantum states , 2005 .

[22]  Bryan Eastin,et al.  Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.

[23]  D. Gross,et al.  Evenly distributed unitaries: On the structure of unitary designs , 2006, quant-ph/0611002.

[24]  W. Wootters A Wigner-function formulation of finite-state quantum mechanics , 1987 .

[25]  David Gross,et al.  Non-negative Wigner functions in prime dimensions , 2007 .

[26]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[27]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[28]  J Eisert,et al.  Positive Wigner functions render classical simulation of quantum computation efficient. , 2012, Physical review letters.

[29]  Bryan Eastin,et al.  Distilling one-qubit magic states into Toffoli states , 2012, 1212.4872.

[30]  M. Horodecki,et al.  Reversible transformations from pure to mixed states and the unique measure of information , 2002, quant-ph/0212019.

[31]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[32]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[33]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[34]  A. Peres All the Bell Inequalities , 1998, quant-ph/9807017.

[35]  P. Horodecki,et al.  Nonadditivity of quantum and classical capacities for entanglement breaking multiple-access channels and the butterfly network , 2009, 0906.1305.

[36]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[37]  William K. Wootters,et al.  Discrete phase space based on finite fields (23 pages) , 2004 .

[38]  Victor Veitch,et al.  Contextuality supplies the ‘magic’ for quantum computation , 2014, Nature.

[39]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[40]  Nathan Wiebe,et al.  Efficient simulation scheme for a class of quantum optics experiments with non-negative Wigner representation , 2012, 1210.1783.

[41]  M. Plenio Logarithmic negativity: a full entanglement monotone that is not convex. , 2005, Physical review letters.

[42]  Jonathan Oppenheim,et al.  Are the laws of entanglement theory thermodynamical? , 2002, Physical review letters.

[43]  E. Knill,et al.  Theory of quantum computation , 2000, quant-ph/0010057.

[44]  Mark Howard,et al.  Qudit versions of the qubit "pi-over-eight" gate , 2012, 1206.1598.

[45]  M. Piani Relative entropy of entanglement and restricted measurements. , 2009, Physical review letters.

[46]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[47]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[48]  Ben Reichardt,et al.  Quantum Universality from Magic States Distillation Applied to CSS Codes , 2005, Quantum Inf. Process..

[49]  Earl T. Campbell,et al.  Catalysis and activation of magic states in fault-tolerant architectures , 2010, 1010.0104.

[50]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[51]  D. Browne,et al.  Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes , 2012, 1205.3104.

[52]  Stephen D. Bartlett,et al.  Non-negative subtheories and quasiprobability representations of qubits , 2012, 1203.2652.

[53]  Cody Jones,et al.  Distillation protocols for Fourier states in quantum computing , 2013, Quantum Inf. Comput..