Optical design of programmable logic arrays.

Regular free-space interconnects such as the perfect shuffle and banyan provided by beam splitters, lenses, and mirrors connect optical logic gates arranged in 2-D arrays. An algorithmic design technique transforms arbitrary logic equations into a near-optimal depth circuit. Analysis shows that an arbitrary interconnect makes little or no improvement in circuit depth and can even reduce throughput. Gate count is normally higher with a regular interconnect, and we show cost bounds. We conclude that regularly interconnected circuits will have a higher gate count compared with arbitrarily interconnected circuits using the design techniques presented here and that regular free-space interconnects are comparable with arbitrary interconnects in terms of circuit depth and are preferred to arbitrary interconnects for maximizing throughput.