Parallel scalability study of hybrid preconditioners in three dimensions

In this paper we study the parallel scalability of variants of additive Schwarz preconditioners for three dimensional non-overlapping domain decomposition methods. To alleviate the computational cost, both in terms of memory and floating-point complexity, we investigate variants based on a sparse approximation or on mixed 32- and 64-bit calculation. The robustness of the preconditioners is illustrated on a set of linear systems arising from the finite element discretization of elliptic PDEs through extensive parallel experiments on up to 1000 processors. Their efficiency from a numerical and parallel performance view point are studied.

[1]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[2]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[3]  Layne T. Watson,et al.  Parallel scalability study of three dimensional additive Schwarz preconditioners in non-overlapping domain decomposition , 2007 .

[4]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.

[5]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[6]  Layne T. Watson,et al.  Parallel ELLPACK for shared memory multiprocessors , 1993 .

[7]  Gabriel Mateescu,et al.  A domain decomposition preconditioner for hermite collocation problems , 2003 .

[8]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[9]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[10]  Layne T. Watson,et al.  Toward parallel mathematical software for elliptic partial differential equations , 1993, TOMS.

[11]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[12]  J. Dongarra,et al.  Exploiting the Performance of 32 bit Floating Point Arithmetic in Obtaining 64 bit Accuracy (Revisiting Iterative Refinement for Linear Systems) , 2006, ACM/IEEE SC 2006 Conference (SC'06).

[13]  Layne T. Watson,et al.  Domain Decomposition and High Order Finite Differences for Elliptic PDEs , 1993, SIAM Conference on Parallel Processing for Scientific Computing.

[14]  Jack Dongarra,et al.  Implementation of the Mixed-Precision High Performance LINPACK Benchmark on the CELL Processor , 2006 .

[15]  Luc Giraud,et al.  Local preconditioners for two-level non-overlapping domain decomposition methods , 2001, Numer. Linear Algebra Appl..

[16]  Luc Giraud,et al.  Algebraic Two-Level Preconditioners for the Schur Complement Method , 2000, SIAM J. Sci. Comput..

[17]  Luc Giraud,et al.  Iterative versus direct parallel substructuring methods in semiconductor device modelling , 2005, Numer. Linear Algebra Appl..

[18]  Layne T. Watson,et al.  Preconditioned iterative methods for sparse linear algebra problems arising in circuit simulation , 1994 .

[19]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Partial Differential Equations , 1999 .