Double-stranded RNA viruses of Saccharomyces cerevisiae

INFECTIOUS ELEMENTS OF SACCHAROMYCES CEREVISIAE ....................................................................250 BIOLOGY OF THE YEAST dsRNA VIRUSES AND THE KILLER PHENOMENON...................................250 L-A VIRUS STRUCTURE: T 5 1 WITH 60 ASYMMETRIC Gag DIMERS.....................................................251 VIRAL REPLICATION CYCLES.............................................................................................................................251 L-A ENCODES Gag AND Gag-Pol ..........................................................................................................................252 REPLICATION AND TRANSCRIPTION OF VIRAL RNA: IN VITRO SYSTEMS.........................................254 TRANSLATION OF VIRAL mRNA .........................................................................................................................254 The SKI2,3,8 System Blocks the Translation of Non-Poly(A) mRNA .............................................................255 M1 Propagation Depends Critically on Free 60S Ribosomal Subunit Levels................................................256 Do SKI2, 3, and 8 Determine 60S Subunit Interaction with Poly(A)?............................................................257 Gag Makes Decapitated Decoys To Distract the SKI1/XRN1 Exoribonuclease..............................................257 Lethality of ski1 ski2 and ski1 ski3 double mutants.......................................................................................258 Gag-Pol Fusion Protein Formed by a 21 Ribosomal Frameshift: How and Why ........................................258 Mechanism of 21 ribosomal frameshifting ....................................................................................................258 How critical is the efficiency of frameshifting?...............................................................................................259 Chromosomal genes affecting the efficiency of frameshifting.......................................................................259 Can 21 ribosomal frameshifting be used as a target of antiviral drugs? .................................................259 POSTTRANSLATIONAL PROCESSING ...............................................................................................................259 MAK3 N-Acetyltransferase Modification of Gag Is Necessary for Assembly .................................................259 Killer Preprotoxin Is Processed To Form Mature Toxin..................................................................................260 KEX1 and KEX2 Processing Proteases and Mammalian Prohormone Processing........................................260 RNA PACKAGING: IN VITRO AND IN VIVO......................................................................................................260 Evidence for cis Packaging by L-A .......................................................................................................................260 Does Packaging Control Translation? .................................................................................................................260 L-BC IS CLOSELY RELATED TO L-A..................................................................................................................261 CONCLUSIONS AND PROSPECTS.......................................................................................................................261 REFERENCES ............................................................................................................................................................262

[1]  K. Narita,et al.  Isolation of acetylpeptide from enzymic digests of TMV-protein. , 1958, Biochimica et biophysica acta.

[2]  The protein subunit of turnip yellow mosaic virus. , 1961, Journal of molecular biology.

[3]  A. Klug,et al.  Physical principles in the construction of regular viruses. , 1962, Cold Spring Harbor symposia on quantitative biology.

[4]  C. A. Knight,et al.  The protein subunit of potato virus X. , 1968, Virology.

[5]  D. R. Woods,et al.  Studies on the nature of the killer factor produced by Saccharomyces cerevisiae. , 1968, Journal of General Microbiology.

[6]  L. Bosch,et al.  Structural studies on the coat protein of alfalfa-mosaic virus. , 1972, European journal of biochemistry.

[7]  G. Fink,et al.  Curing of a killer factor in Saccharomyces cerevisiae. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[8]  A. Herring,et al.  Preliminary Characterization of Two Species of dsRNA in Yeast and their Relationship to the “Killer” Character , 1973, Nature.

[9]  P. D. Thomas,et al.  STRAINS OF YEAST LETHAL TO BREWERY YEASTS , 1973 .

[10]  H. Bussey,et al.  Action of Yeast Killer Factor: a Resistant Mutant with Sensitive Spheroplasts , 1973, Journal of bacteriology.

[11]  J. M. Somers Isolation of Suppressive Sensitive Mutants from Killer and Neutral Strains of SACCHAROMYCES CEREVISIAE. , 1973, Genetics.

[12]  R. Wickner Chromosomal and nonchromosomal mutations affecting the "killer character" of Saccharomyces cerevisiae. , 1974, Genetics.

[13]  G. Fink,et al.  Yeast Killer Mutants with Altered Double-Stranded Ribonucleic Acid , 1974, Journal of bacteriology.

[14]  A. Herring,et al.  Virus-like particles associated with the double-stranded RNA species found in killer and sensitive strains of the yeast Saccharomyces cerevisiae. , 1974, The Journal of general virology.

[15]  J. Bruenn,et al.  The 5' ends of yeast killer factor RNAs are pppGp. , 1976, Nucleic acids research.

[16]  A. Shatkin,et al.  Mechanism of formation of reovirus mRNA 5'-terminal blocked and methylated sequence, m7GpppGmpC. , 1976, The Journal of biological chemistry.

[17]  Mutants of the killer plasmid of Saccharomyces cerevisiae dependent on chromosomal diploidy for expression and maintenance. , 1976, Genetics.

[18]  R. Wickner,et al.  A chromosomal gene required for killer plasmid expression, mating, and spore maturation in Saccharomyces cerevisiae. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Wickner,et al.  Two chromosomal genes required for killing expression in killer strains of Saccharomyces cerevisiae. , 1976, Genetics.

[20]  R. Wickner,et al.  Chromosomal genes essential for replication of a double-stranded RNA plasmid of Saccharomyces cerevisiae: the killer character of yeast. , 1976, Journal of molecular biology.

[21]  K. Bostian,et al.  Translation of the L-species dsRNA genome of the killer-associated virus-like particles of Saccharomyces cerevisiae. , 1977, The Journal of biological chemistry.

[22]  A. Herring,et al.  Yeast virus-like particles possess a capsid-associated single-stranded RNA polymerase , 1977, Nature.

[23]  S. Oliver,et al.  Biochemical and physiological studies of the yeast virus-like particle , 1977, Journal of bacteriology.

[24]  R. Wickner,et al.  Chromosomal superkiller mutants of Saccharomyces cerevisiae , 1978, Journal of bacteriology.

[25]  R. Krug,et al.  Globin mRNAs are primers for the transcription of influenza viral RNA in vitro. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[26]  G. Fink,et al.  Electron microscopic heteroduplex analysis of "killer" double-stranded RNA species from yeast. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[27]  H. Bussey,et al.  Saccharomyces cerevisiae killer expression mutant kex2 has altered secretory proteins and glycoproteins. , 1979, Biochemical and biophysical research communications.

[28]  Mapping chromosomal genes of Saccharomyces cerevisiae using an improved genetic mapping method. , 1979, Genetics.

[29]  J. Bruenn,et al.  Yeast viral double-stranded RNAs have heterogeneous 3′ termini , 1980, Cell.

[30]  K. Bostian,et al.  Encapsidation of yeast killer double-stranded ribonucleic acids: dependence of M on L , 1980, Journal of bacteriology.

[31]  K. Bostian,et al.  Translational analysis of the killer-associated virus-like particle dsRNA genome of S. cerevisiae: M dsRNA encodes toxin , 1980, Cell.

[32]  R. Wickner Plasmids controlling exclusion of the K2 killer double-stranded RNA plasmid of yeast , 1980, Cell.

[33]  A. Stevens Purification and characterization of a Saccharomyces cerevisiae exoribonuclease which yields 5'-mononucleotides by a 5' leads to 3' mode of hydrolysis. , 1980, The Journal of biological chemistry.

[34]  "Superkiller" mutations suppress chromosomal mutations affecting double-stranded RNA killer plasmid replication in saccharomyces cerevisiae. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[35]  F. Barros,et al.  Effect of yeast killer toxin on sensitive cells of Saccharomyces cerevisiae. , 1981, The Journal of biological chemistry.

[36]  R. Krug,et al.  A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription , 1981, Cell.

[37]  S. Elliott,et al.  Replication of double-stranded RNA of the virus-like particles in Saccharomyces cerevisiae , 1981, Journal of virology.

[38]  R. E. Dalton,et al.  The molecular weight and packaging of dsRNAs in the mycovirus from Ustilago maydis killer strains. , 1981, Virology.

[39]  There are at least two yeast viral double-stranded RNAs of the same size: An explanation for viral exclusion , 1982, Cell.

[40]  R. Wickner,et al.  Ribosomal protein L3 is involved in replication or maintenance of the killer double-stranded RNA genome of Saccharomyces cerevisiae. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Wickner,et al.  [HOK], a new yeast non-Mendelian trait, enables a replication-defective killer plasmid to be maintained. , 1982, Genetics.

[42]  R. Wickner,et al.  Yeast L dsRNA consists of at least three distinct RNAs; evidence that the non-mendelian genes [HOK], [NEX] and [EXL] are on one of these dsRNAs , 1982, Cell.

[43]  R. Wickner Killer systems in Saccharomyces cerevisiae: three distinct modes of exclusion of M2 double-stranded RNA by three species of double-stranded RNA, M1, L-A-E, and L-A-HN , 1983, Molecular and cellular biology.

[44]  H. Bussey,et al.  Cell Wall Receptor for Yeast Killer Toxin: Involvement of (1 → 6)-β-d-Glucan , 1983 .

[45]  E. Chen,et al.  Saccharomyces cerevisiae contains two discrete genes coding for the alpha-factor pheromone. , 1983, Nucleic acids research.

[46]  R. Wickner,et al.  Defective Interference in the Killer System of Saccharomyces cerevisiae , 1983, Journal of virology.

[47]  F. Hilger,et al.  Evidence for a new chromosome in Saccharomyces cerevisiae , 1983, Molecular and cellular biology.

[48]  D. Bishop,et al.  Nonviral heterogeneous sequences are present at the 5' ends of one species of snowshoe hare bunyavirus S complementary RNA. , 1983, Nucleic Acids Research.

[49]  R. Wickner,et al.  Superkiller mutations in Saccharomyces cerevisiae suppress exclusion of M2 double-stranded RNA by L-A-HN and confer cold sensitivity in the presence of M and L-A-HN , 1984, Molecular and cellular biology.

[50]  R. Schekman,et al.  Glycosylation and processing of prepro-α-factor through the yeast secretory pathway , 1984, Cell.

[51]  R. Wickner,et al.  Two new double-stranded RNA molecules showing non-mendelian inheritance and heat inducibility in Saccharomyces cerevisiae , 1984, Molecular and cellular biology.

[52]  D. Thiele,et al.  Multiple L double-stranded RNA species of Saccharomyces cerevisiae: evidence for separate encapsidation , 1984, Molecular and cellular biology.

[53]  D. Thiele,et al.  Genome structure and expression of a defective interfering mutant of the killer virus of yeast. , 1984, Virology.

[54]  Conservative replication of double-stranded RNA in Saccharomyces cerevisiae by displacement of progeny single strands. , 1984, Molecular and cellular biology.

[55]  D. Thiele,et al.  Saccharomyces cerevisiae killer virus transcripts contain template-coded polyadenylate tracts , 1984, Molecular and cellular biology.

[56]  R. Wickner,et al.  Double-stranded RNAs that encode killer toxins in Saccharomyces cerevisiae: unstable size of M double-stranded RNA and inhibition of M2 replication by M1 , 1984, Molecular and cellular biology.

[57]  Cloning and sequencing of the preprotoxin‐coding region of the yeast M1 double‐stranded RNA. , 1984, The EMBO journal.

[58]  R. Sternglanz,et al.  Identification of Saccharomyces cerevisiae mutants deficient in DNA topoisomerase I activity. , 1984, The Journal of biological chemistry.

[59]  H. Bussey,et al.  The expression of cDNA clones of yeast M1 double‐stranded RNA in yeast confers both killer and immunity phenotypes. , 1984, The EMBO journal.

[60]  R. Wickner,et al.  Genetic Control of L-a and L-(Bc) Dsrna Copy Number in Killer Systems of SACCHAROMYCES CEREVISIAE. , 1984, Genetics.

[61]  H. Bussey,et al.  Sequence of the preprotoxin dsRNA gene of type I killer yeast: Multiple processing events produce a two-component toxin , 1984, Cell.

[62]  D. Kolakofsky,et al.  La Crosse virions contain a primer-stimulated RNA polymerase and a methylated cap-dependent endonuclease , 1984, Journal of virology.

[63]  J. Thorner,et al.  Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-α-factor , 1984, Cell.

[64]  R. Wickner,et al.  On the mechanism of exclusion of M2 double‐stranded RNA by L–A–E, double‐stranded RNA in Saccharomyces cerevisiae , 1985, Yeast.

[65]  K. Mihara,et al.  Molecular cloning and sequencing of cDNA for yeast porin, an outer mitochondrial membrane protein: a search for targeting signal in the primary structure. , 1985, The EMBO journal.

[66]  P. Farabaugh,et al.  Nucleotide sequence of a yeast Ty element: evidence for an unusual mechanism of gene expression. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Y. Sahashi,et al.  The PET18 locus of Saccharomyces cerevisiae: A complex locus containing multiple genes , 1985, Yeast.

[68]  K. Bostian,et al.  Mapping of functional domains within the Saccharomyces cerevisiae type 1 killer preprotoxin. , 1986, The EMBO journal.

[69]  C. Boone,et al.  Yeast killer toxin: Site-directed mutations implicate the precursor protein as the immunity component , 1986, Cell.

[70]  E. M. Hannig,et al.  The internal polyadenylate tract of yeast killer virus M1 double-stranded RNA is variable in length. , 1986, Virology.

[71]  R. Wickner,et al.  Three different M1 RNA-containing viruslike particle types in Saccharomyces cerevisiae: in vitro M1 double-stranded RNA synthesis , 1986, Molecular and cellular biology.

[72]  Conserved regions in defective interfering viral double-stranded RNAs from a yeast virus , 1986, Journal of virology.

[73]  H. Zarbl,et al.  Reovirus guanylyltransferase is L2 gene product lambda 2 , 1986, Journal of virology.

[74]  R. Wickner,et al.  In vitro L-A double-stranded RNA synthesis in virus-like particles from Saccharomyces cerevisiae. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[75]  K. Bostian,et al.  Viruses in fungi: infection of yeast with the K1 and K2 killer viruses. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[76]  H. Bussey,et al.  Determination of the carboxyl termini of the alpha and beta subunits of yeast K1 killer toxin. Requirement of a carboxypeptidase B-like activity for maturation. , 1987, The Journal of biological chemistry.

[77]  Hormone (pheromone) processing enzymes in yeast. The carboxy-terminal processing enzyme of the mating pheromone alpha-factor, carboxypeptidase ysc alpha, is absent in alpha-factor maturation-defective kex1 mutant cells. , 1987, FEBS letters.

[78]  C. Wang,et al.  Trichomonas vaginalis phenotypic variation occurs only among trichomonads infected with the double-stranded RNA virus , 1987, The Journal of experimental medicine.

[79]  R. Wickner,et al.  A new non-mendelian genetic element of yeast that increases cytopathology produced by M1 double-stranded RNA in ski strains. , 1987, Genetics.

[80]  L-A double-stranded RNA viruslike particle replication cycle in Saccharomyces cerevisiae: particle maturation in vitro and effects of mak10 and pet18 mutations. , 1987, Molecular and cellular biology.

[81]  Reed B. Wickner MKT1, a nonessential Saccharomyces cerevisiae gene with a temperature-dependent effect on replication of M2 double-stranded RNA , 1987, Journal of bacteriology.

[82]  A. Stevens,et al.  A 5'----3' exoribonuclease of Saccharomyces cerevisiae: size and novel substrate specificity. , 1987, Archives of biochemistry and biophysics.

[83]  H. Bussey,et al.  Yeast KEX1 gene encodes a putative protease with a carboxypeptidase B-like function involved in killer toxin and α-factor precursor processing , 1987, Cell.

[84]  F. Radler,et al.  Mannoprotein of the yeast cell wall as primary receptor for the killer toxin of Saccharomyces cerevisiae strain 28. , 1987, Journal of general microbiology.

[85]  T. Williams,et al.  Conservative mechanism of the in vitro transcription of killer virus of yeast. , 1987, Virology.

[86]  D. Wolf,et al.  Hormone (pheromone) processing enzymes in yeast The carboxy‐terminal processing enzyme of the mating pheromone α‐factor, carboxypeptidase yscα, is absent in α‐factor maturation‐defective kex1 mutant cells , 1987 .

[87]  G. Schatz,et al.  A yeast mutant lacking mitochondrial porin is respiratory‐deficient, but can recover respiration with simultaneous accumulation of an 86‐kd extramitochondrial protein. , 1987, The EMBO journal.

[88]  R. Wickner,et al.  Gene disruption indicates that the only essential function of the SKI8 chromosomal gene is to protect Saccharomyces cerevisiae from viral cytopathology. , 1987, Virology.

[89]  N. Sonenberg,et al.  Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA , 1988, Nature.

[90]  R. Wickner,et al.  The MAK11 protein is essential for cell growth and replication of M double-stranded RNA and is apparently a membrane-associated protein. , 1988, The Journal of biological chemistry.

[91]  M. Deutscher,et al.  RNase PH: an Escherichia coli phosphate-dependent nuclease distinct from polynucleotide phosphorylase. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[92]  T. Nakamura,et al.  Yeast KEX2 genes encodes an endopeptidase homologous to subtilisin-like serine proteases. , 1988, Biochemical and biophysical research communications.

[93]  R. Wickner Host function of MAK16: G1 arrest by a mak16 mutant of Saccharomyces cerevisiae. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[94]  K. Stuart,et al.  LR1: a candidate RNA virus of Leishmania. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[95]  Eve DakeS,et al.  Purification and properties of the major nuclease from mitochondria of Saccharomyces cerevisiae. , 1988, The Journal of biological chemistry.

[96]  R. Wickner,et al.  A deletion mutant of L-A double-stranded RNA replicates like M1 double-stranded RNA , 1988, Journal of virology.

[97]  H. P. Zassenhaus,et al.  Construction of a yeast mutant lacking the mitochondrial nuclease. , 1988, Nucleic acids research.

[98]  H. Bussey Proteases and the processing of precursors to secreted proteins in yeast , 1988, Yeast.

[99]  R. Wickner,et al.  Replicase of L-A virus-like particles of Saccharomyces cerevisiae. In vitro conversion of exogenous L-A and M1 single-stranded RNAs to double-stranded form. , 1988, The Journal of biological chemistry.

[100]  H. Varmus,et al.  Signals for ribosomal frameshifting in the rous sarcoma virus gag-pol region , 1988, Cell.

[101]  E. Wimmer,et al.  A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation , 1988, Journal of virology.

[102]  R. Wickner,et al.  Site-specific binding of viral plus single-stranded RNA to replicase-containing open virus-like particles of yeast. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[103]  R. Wickner,et al.  Suppression of chromosomal mutations affecting M1 virus replication in Saccharomyces cerevisiae by a variant of a viral RNA segment (L-A) that encodes coat protein. , 1988, Molecular and cellular biology.

[104]  R. Wickner,et al.  Gene overlap results in a viral protein having an RNA binding domain and a major coat protein domain , 1988, Cell.

[105]  H. Bussey,et al.  Characterization of the yeast KEX1 gene product: a carboxypeptidase involved in processing secreted precursor proteins , 1989, Molecular and cellular biology.

[106]  J. Thorner,et al.  Intracellular targeting and structural conservation of a prohormone-processing endoprotease. , 1989, Science.

[107]  I. Brierley,et al.  Characterization of an efficient coronavirus ribosomal frameshifting signal: Requirement for an RNA pseudoknot , 1989, Cell.

[108]  C. Dieckmann,et al.  Overproduction of yeast viruslike particles by strains deficient in a mitochondrial nuclease , 1989, Molecular and cellular biology.

[109]  R. Wickner,et al.  Reconstitution of template-dependent in vitro transcriptase activity of a yeast double-stranded RNA virus. , 1989, The Journal of biological chemistry.

[110]  R. Wickner,et al.  The double-stranded RNA genome of yeast virus L-A encodes its own putative RNA polymerase by fusing two open reading frames. , 1989, The Journal of biological chemistry.

[111]  J. Thorner,et al.  Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[112]  R. Wickner,et al.  Structure and nuclear localization signal of the SK13 antiviral protein of Saccharomyces cerevisiae , 1989, Yeast.

[113]  V. Stollar,et al.  SVLM21, a Sindbis virus mutant resistant to methionine deprivation, encodes an altered methyltransferase. , 1989, Virology.

[114]  J. Lambris,et al.  Accumulation of viruslike particles in a yeast mutant lacking a mitochondrial pore protein. , 1989, Molecular and cellular biology.

[115]  T. Nakamura,et al.  Characterization of KEX2-encoded endopeptidase from yeast Saccharomyces cerevisiae. , 1989, Biochemical and biophysical research communications.

[116]  R. Wickner,et al.  Internal and terminal cis‐acting sites are necessary for in vitro replication of the L‐A double‐stranded RNA virus of yeast. , 1989, The EMBO journal.

[117]  J. Boeke,et al.  Host genes that influence transposition in yeast: the abundance of a rare tRNA regulates Ty1 transposition frequency. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[118]  G. Fink,et al.  kem mutations affect nuclear fusion in Saccharomyces cerevisiae. , 1990, Genetics.

[119]  Philip J. Farabaugh,et al.  Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site , 1990, Cell.

[120]  T. Jacks Translational suppression in gene expression in retroviruses and retrotransposons. , 1990, Current topics in microbiology and immunology.

[121]  A. Jacobson,et al.  Tales of poly(A): a review. , 1990, Gene.

[122]  C. Boone,et al.  Yeast KRE genes provide evidence for a pathway of cell wall beta-glucan assembly , 1990, The Journal of cell biology.

[123]  R. Wickner,et al.  Circular single-stranded RNA replicon in Saccharomyces cerevisiae. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[124]  D. Ryk,et al.  Efficient expression and utilization of mutant 5 S rRNA in Saccharomyces cerevisiae. , 1990, The Journal of biological chemistry.

[125]  X. L. Zhou,et al.  Yeast K1 killer toxin forms ion channels in sensitive yeast spheroplasts and in artificial liposomes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[126]  R. Wickner,et al.  Portable encapsidation signal of the L-A double-stranded RNA virus of S. cerevisiae , 1990, Cell.

[127]  H. Bussey,et al.  The yeast KRE5 gene encodes a probable endoplasmic reticulum protein required for (1----6)-beta-D-glucan synthesis and normal cell growth , 1990, Molecular and cellular biology.

[128]  C. Wang,et al.  Transfection of the Giardia lamblia double-stranded RNA virus into giardia lamblia by electroporation of a single-stranded RNA copy of the viral genome , 1990, Molecular and cellular biology.

[129]  F. Larimer,et al.  Disruption of the gene XRN1, coding for a 5'----3' exoribonuclease, restricts yeast cell growth. , 1990, Gene.

[130]  D. Tipper,et al.  K28, a unique double-stranded RNA killer virus of Saccharomyces cerevisiae. , 1990, Molecular and cellular biology.

[131]  S. Peltz,et al.  The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. , 1991, Genes & development.

[132]  D. Tipper,et al.  Yeast dsRNA viruses: replication and killer phenotypes , 1991, Molecular microbiology.

[133]  Direct introduction and transient expression of capped and non-capped RNA in Saccharomyces cerevisiae. , 1991, Nucleic acids research.

[134]  H. Bussey K1 killer toxin, a pore‐forming protein from yeast , 1991, Molecular microbiology.

[135]  K. Redding,et al.  Immunolocalization of Kex2 protease identifies a putative late Golgi compartment in the yeast Saccharomyces cerevisiae , 1991, The Journal of cell biology.

[136]  S. Hara,et al.  Cloning and nucleotide sequence of the KHS killer gene of Saccharomyces cerevisiae. , 1990, Agricultural and biological chemistry.

[137]  R. Wickner,et al.  A -1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion protein. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[138]  I. Brierley,et al.  Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal☆ , 1991, Journal of Molecular Biology.

[139]  D. Kipling,et al.  rar mutations which increase artificial chromosome stability in Saccharomyces cerevisiae identify transcription and recombination proteins. , 1991, Nucleic acids research.

[140]  H. Bussey,et al.  Yeast beta-glucan synthesis: KRE6 encodes a predicted type II membrane protein required for glucan synthesis in vivo and for glucan synthase activity in vitro. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[141]  R. Weiss,et al.  Towards a genetic dissection of the basis of triplet decoding, and its natural subversion: programmed reading frame shifts and hops. , 1991, Annual review of genetics.

[142]  J. Broach,et al.  Genome dynamics, protein synthesis, and energetics , 1991 .

[143]  R. Wickner,et al.  Expression of yeast L-A double-stranded RNA virus proteins produces derepressed replication: a ski- phenocopy , 1991, Journal of virology.

[144]  J. Bruenn,et al.  In vivo mapping of a sequence required for interference with the yeast killer virus. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[145]  R. Kolodner,et al.  Molecular and genetic analysis of the gene encoding the Saccharomyces cerevisiae strand exchange protein Sep1 , 1991, Molecular and cellular biology.

[146]  R. Wickner,et al.  MAK10, a glucose-repressible gene necessary for replication of a dsRNA virus of Saccharomyces cerevisiae, has T cell receptor alpha-subunit motifs. , 1992, Genetics.

[147]  S. Ghabrial,et al.  The Helminthosporium victoriae 190S mycovirus has two forms distinguishable by capsid protein composition and phosphorylation state. , 1992, Virology.

[148]  R. Wickner,et al.  RNA-dependent RNA polymerase consensus sequence of the L-A double-stranded RNA virus: definition of essential domains. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[149]  Interaction of two cis sites with the RNA replicase of the yeast L-A virus. , 1992, The Journal of biological chemistry.

[150]  D. Hatfield,et al.  Translational Suppression in Retroviral GENE Expression , 1992, Advances in Virus Research.

[151]  N. Sonenberg,et al.  The coat protein of the yeast double-stranded RNA virus L-A attaches covalently to the cap structure of eukaryotic mRNA , 1992, Molecular and cellular biology.

[152]  R. Wickner,et al.  Pol of gag–pol fusion protein required for encapsidation of viral RNA of yeast L-A virus , 1992, Nature.

[153]  Daniel F. Voytas,et al.  Yeast retrotransposon revealed , 1992, Nature.

[154]  T. Tzeng,et al.  Ribosomal frameshifting requires a pseudoknot in the Saccharomyces cerevisiae double-stranded RNA virus , 1992, Journal of virology.

[155]  H. Feldmann,et al.  Molecular analysis of the yeast Ty4 element: homology with Ty1, copia, and plant retrotransposons. , 1992, Gene.

[156]  T. Donahue,et al.  The suil suppressor locus in Saccharomyces cerevisiae encodes a translation factor that functions during tRNA(iMet) recognition of the start codon , 1992, Molecular and cellular biology.

[157]  T double-stranded RNA (dsRNA) sequence reveals that T and W dsRNAs form a new RNA family in Saccharomyces cerevisiae. Identification of 23 S RNA as the single-stranded form of T dsRNA. , 1992, The Journal of biological chemistry.

[158]  G. Choi,et al.  Hypovirulence of chestnut blight fungus conferred by an infectious viral cDNA. , 1992, Science.

[159]  S. Inglis,et al.  Internal entry of ribosomes on a tricistronic mRNA encoded by infectious bronchitis virus , 1992, Journal of virology.

[160]  J A Bruenn,et al.  Ribosomal movement impeded at a pseudoknot required for frameshifting. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[161]  R. Wickner,et al.  Double-stranded and single-stranded RNA viruses of Saccharomyces cerevisiae. , 1992, Annual review of microbiology.

[162]  L. Riles,et al.  Localized mutagenesis and evidence for post-transcriptional regulation of MAK3. A putative N-acetyltransferase required for double-stranded RNA virus propagation in Saccharomyces cerevisiae. , 1992, The Journal of biological chemistry.

[163]  M. Deutscher,et al.  RNase PH is essential for tRNA processing and viability in RNase-deficient Escherichia coli cells. , 1992, The Journal of biological chemistry.

[164]  D. Tipper,et al.  Genetic analysis of maintenance and expression of L and M double‐stranded RNAs from yeast killer virus K28 , 1992, Yeast.

[165]  Dependence of minus-strand synthesis on complete genomic packaging in the double-stranded RNA bacteriophage phi 6 , 1992, Journal of virology.

[166]  M. Deutscher,et al.  Characterization of Escherichia coli RNase PH. , 1992, The Journal of biological chemistry.

[167]  F. Larimer,et al.  Characterization of the XRN1 gene encoding a 5'-->3' exoribonuclease: sequence data and analysis of disparate protein and mRNA levels of gene-disrupted yeast cells. , 1992, Gene.

[168]  D. Gallie,et al.  RNA delivery in Saccharomyces cerevisiae using electroporation , 1992, Yeast.

[169]  S. Sandmeyer Yeast retrotransposons. , 1992, Current opinion in genetics & development.

[170]  R. Wickner,et al.  Ribosomal frameshifting efficiency and gag/gag-pol ratio are critical for yeast M1 double-stranded RNA virus propagation , 1992, Journal of virology.

[171]  R. Wickner,et al.  MAK3 encodes an N-acetyltransferase whose modification of the L-A gag NH2 terminus is necessary for virus particle assembly. , 1992, The Journal of biological chemistry.

[172]  D. Steiner,et al.  The new enzymology of precursor processing endoproteases. , 1992, The Journal of biological chemistry.

[173]  R. Wickner,et al.  Yeast MAK3 N-acetyltransferase recognizes the N-terminal four amino acids of the major coat protein (gag) of the L-A double-stranded RNA virus , 1993, Journal of bacteriology.

[174]  J. V. Moran,et al.  Reverse transcriptase activity associated with maturase-encoding group II introns in yeast mitochondria , 1993, Cell.

[175]  R. Schweyen,et al.  Transposition of group II intron al1 in yeast and invasion of mitochondrial genes at new locations , 1993, Nature.

[176]  C. Wang,et al.  Giardiavirus double-stranded RNA genome encodes a capsid polypeptide and a gag-pol-like fusion protein by a translation frameshift. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[177]  Y. Nakamura,et al.  A rare tRNA-Arg(CCU) that regulates Ty1 element ribosomal frameshifting is essential for Ty1 retrotransposition in Saccharomyces cerevisiae. , 1993, Genetics.

[178]  I. Brierley,et al.  Ribosomal pausing during translation of an RNA pseudoknot , 1993, Molecular and cellular biology.

[179]  R. Wickner,et al.  Evidence that the SKI antiviral system of Saccharomyces cerevisiae acts by blocking expression of viral mRNA , 1993, Molecular and cellular biology.

[180]  J. Alderete,et al.  Multiple double-stranded RNA segments are associated with virus particles infecting Trichomonas vaginalis , 1993, Journal of virology.

[181]  R. Wickner,et al.  A yeast antiviral protein, SKI8, shares a repeated amino acid sequence pattern with β‐subunits of G proteins and several other proteins , 1993, Yeast.

[182]  RNA structural requirements for RNA binding, replication, and packaging in the yeast double-stranded RNA virus. , 1993, Virology.

[183]  P. Farabaugh Alternative readings of the genetic code , 1993, Cell.

[184]  C L Hsu,et al.  Yeast cells lacking 5'-->3' exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5' cap structure , 1993, Molecular and cellular biology.

[185]  J. Bruenn A closely related group of RNA-dependent RNA polymerases from double-stranded RNA viruses. , 1993, Nucleic acids research.

[186]  A. Stevens 17 – Eukaryotic Nucleases and mRNA Turnover , 1993 .

[187]  R. Esteban,et al.  Genomic organization of T and W, a new family of double-stranded RNAs from Saccharomyces cerevisiae. , 1993, Progress in nucleic acid research and molecular biology.

[188]  P. Ahlquist,et al.  RNA-dependent replication, transcription, and persistence of brome mosaic virus RNA replicons in S. cerevisiae , 1993, Cell.

[189]  R. Sternglanz,et al.  N-Terminal Acetylation of Mutationally Altered Form of Iso-1-Cytochromes c in Normal and nat1 - Strains Deficient in the Major N-Terminal Acetyl Transferase of the Yeast Saccharomyces Cerevisiae , 1993 .

[190]  B L Trus,et al.  Fungal virus capsids, cytoplasmic compartments for the replication of double-stranded RNA, formed as icosahedral shells of asymmetric Gag dimers. , 1994, Journal of molecular biology.

[191]  C. Herbert,et al.  II. Yeast sequencing reports. The sequence of 12·5 kb from the right arm of chromosome II predicts a new N‐terminal sequence for the IRA1 protein and reveals two new genes, one of which is a DEAD‐box helicase , 1994 .

[192]  R Parker,et al.  Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5'-->3' digestion of the transcript. , 1994, Genes & development.

[193]  C. W. Tabor,et al.  Spermidine deficiency increases +1 ribosomal frameshifting efficiency and inhibits Ty1 retrotransposition in Saccharomyces cerevisiae. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[194]  N. Sonenberg,et al.  His-154 is involved in the linkage of the Saccharomyces cerevisiae L-A double-stranded RNA virus Gag protein to the cap structure of mRNAs and is essential for M1 satellite virus expression , 1994, Molecular and cellular biology.

[195]  P Sarnow,et al.  Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae , 1994, Molecular and cellular biology.

[196]  R. Lester,et al.  The LCB2 gene of Saccharomyces and the related LCB1 gene encode subunits of serine palmitoyltransferase, the initial enzyme in sphingolipid synthesis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[197]  T. Dunn,et al.  Suppressors of the Ca(2+)-sensitive yeast mutant (csg2) identify genes involved in sphingolipid biosynthesis. Cloning and characterization of SCS1, a gene required for serine palmitoyltransferase activity. , 1994, The Journal of biological chemistry.

[198]  Identification of the packaging regions within the genomic RNA segments of bacteriophage phi 6. , 1994, Virology.

[199]  R. Wickner,et al.  Essential RNA binding and packaging domains of the Gag-Pol fusion protein of the L-A double-stranded RNA virus of Saccharomyces cerevisiae. , 1994, The Journal of biological chemistry.

[200]  Association of yeast viral 23 S RNA with its putative RNA-dependent RNA polymerase. , 1994, The Journal of biological chemistry.

[201]  M. Estes,et al.  Template-dependent, in vitro replication of rotavirus RNA , 1994, Journal of virology.

[202]  R. B. Wickner,et al.  A cryptic RNA-binding domain in the Pol region of the L-A double-stranded RNA virus Gag-Pol fusion protein , 1994, Journal of virology.

[203]  XIV. Yeast sequencing reports. Sequence of MKT1, needed for propagation of M2 satellite dsRNA of the L‐A virus of Saccharomyces cerevisiae , 1994 .

[204]  C. Chezzi,et al.  Idiotypic intravaginal vaccination to protect against candidal vaginitis by secretory, yeast killer toxin-like anti-idiotypic antibodies. , 1994, Journal of immunology.

[205]  R. Wickner,et al.  Translational maintenance of frame: mutants of Saccharomyces cerevisiae with altered -1 ribosomal frameshifting efficiencies. , 1994, Genetics.

[206]  N. Nomura,et al.  Prediction of the coding sequences of unidentified human genes. I. The coding sequences of 40 new genes (KIAA0001-KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG-1. , 1994, DNA research : an international journal for rapid publication of reports on genes and genomes.

[207]  S. Ghabrial New Developments in Fungal Virology , 1994, Advances in Virus Research.

[208]  N. Sonenberg,et al.  Decoying the cap- mRNA degradation system by a double-stranded RNA virus and poly(A)- mRNA surveillance by a yeast antiviral system , 1995, Molecular and cellular biology.

[209]  P. Ahlquist,et al.  Formation of brome mosaic virus RNA-dependent RNA polymerase in yeast requires coexpression of viral proteins and viral RNA. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[210]  C. Y. Yu,et al.  Human helicase gene SKI2W in the HLA class III region exhibits striking structural similarities to the yeast antiviral gene SKI2 and to the human gene KIAA0052: emergence of a new gene family. , 1995, Nucleic acids research.

[211]  S. Park,et al.  Identification and characterization of a human cDNA homologous to yeast SKI2. , 1995, Genomics.

[212]  R. Wickner,et al.  Translation and M1 double-stranded RNA propagation: MAK18 = RPL41B and cycloheximide curing , 1995, Journal of bacteriology.

[213]  R Parker,et al.  Turnover mechanisms of the stable yeast PGK1 mRNA , 1995, Molecular and cellular biology.

[214]  J. Patterson,et al.  The short transcript of Leishmania RNA virus is generated by RNA cleavage , 1995, Journal of virology.

[215]  R. Wickner,et al.  5 S rRNA is involved in fidelity of translational reading frame. , 1995, Genetics.

[216]  R. Wickner,et al.  Yeast virus propagation depends critically on free 60S ribosomal subunit concentration , 1995, Molecular and cellular biology.

[217]  H. Varmus,et al.  A genetic screen identifies cellular factors involved in retroviral -1 frameshifting. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[218]  R. Kolodner,et al.  Synthetic lethality of sep1 (xrn1) ski2 and sep1 (xrn1) ski3 mutants of Saccharomyces cerevisiae is independent of killer virus and suggests a general role for these genes in translation control , 1995, Molecular and cellular biology.

[219]  KRB1, a suppressor of mak7-1 (a mutant RPL4A), is RPL4B, a second ribosomal protein L4 gene, on a fragment of Saccharomyces chromosome XII. , 1995, Genetics.

[220]  M. Belfort,et al.  Mechanisms of Intron Mobility (*) , 1995, The Journal of Biological Chemistry.

[221]  J. LeBowitz,et al.  Leishmania RNA virus 1-mediated cap-independent translation , 1995, Molecular and cellular biology.

[222]  W. Chiu,et al.  Visualization of ordered genomic RNA and localization of transcriptional complexes in rotavirus , 1996, Nature.

[223]  J. F. Atkins,et al.  Recoding: dynamic reprogramming of translation. , 1996, Annual review of biochemistry.

[224]  A. Cassone,et al.  Human natural yeast killer toxin-like candidacidal antibodies. , 1996, Journal of immunology.

[225]  R. Wickner,et al.  Saccharomyces cerevisiae L-BC double-stranded RNA virus replicase recognizes the L-A positive-strand RNA 3' end , 1996, Journal of virology.

[226]  S. Peltz,et al.  Mof4-1 is an allele of the UPF1/IFS2 gene which affects both mRNA turnover and -1 ribosomal frameshifting efficiency. , 1996, The EMBO journal.

[227]  P. Ahlquist,et al.  Complete replication of an animal virus and maintenance of expression vectors derived from it in Saccharomyces cerevisiae. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[228]  J A Lawton,et al.  Three-dimensional structural analysis of recombinant rotavirus-like particles with intact and amino-terminal-deleted VP2: implications for the architecture of the VP2 capsid layer , 1997, Journal of virology.

[229]  M. Mann,et al.  The Exosome: A Conserved Eukaryotic RNA Processing Complex Containing Multiple 3′→5′ Exoribonucleases , 1997, Cell.

[230]  G. Krafft,et al.  Internally consistent libraries of fluorogenic substrates demonstrate that Kex2 protease specificity is generated by multiple mechanisms. , 1997, Biochemistry.

[231]  T. Dunn,et al.  Serine Palmitoyltransferase (scs1/lcb2) Mutants have Elevated Copy Number of the L‐A dsRNA Virus , 1997, Yeast.

[232]  K. Adelman,et al.  In vitro selection of packaging sites in a double-stranded RNA virus , 1997, Journal of virology.

[233]  S. Fuller,et al.  Intermediates in the assembly pathway of the double‐stranded RNA virus φ6 , 1997, The EMBO journal.

[234]  T. Kinzy,et al.  Translational misreading: mutations in translation elongation factor 1alpha differentially affect programmed ribosomal frameshifting and drug sensitivity. , 1997, RNA.

[235]  A. Cassone,et al.  Therapeutic potential of antiidiotypic single chain antibodies with yeast killer toxin activity , 1997, Nature Biotechnology.

[236]  M. Gerloni,et al.  Yeast killer systems , 1997, Clinical microbiology reviews.

[237]  L. Alberghina,et al.  Identification of Gene encoding a Putative RNA‐Helicase, Homologous to SKI2, in Chromosome VII of Saccharomyces cerevisiae , 1997, Yeast.

[238]  M. Ruiz-Echevarría,et al.  Peptidyl-transferase inhibitors have antiviral properties by altering programmed -1 ribosomal frameshifting efficiencies: development of model systems. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[239]  J. Patton,et al.  Rotavirus RNA polymerase requires the core shell protein to synthesize the double-stranded RNA genome , 1997, Journal of virology.

[240]  Alasdair C. Steven,et al.  Structure of L-A Virus: A Specialized Compartment for the Transcription and Replication of Double-stranded RNA , 1997, The Journal of cell biology.

[241]  K. Gensberg,et al.  Subtilisin-related serine proteases in the mammalian constitutive secretory pathway. , 1998, Seminars in cell & developmental biology.

[242]  C. Y. Yu,et al.  The human DEVH-box protein Ski2w from the HLA is localized in nucleoli and ribosomes. , 1998, Nucleic acids research.

[243]  R. Wickner,et al.  Ski6p Is a Homolog of RNA-Processing Enzymes That Affects Translation of Non-Poly(A) mRNAs and 60S Ribosomal Subunit Biogenesis , 1998, Molecular and Cellular Biology.

[244]  R. Wickner,et al.  Mak21p of Saccharomyces cerevisiae, a Homolog of Human CAATT-binding Protein, Is Essential for 60 S Ribosomal Subunit Biogenesis* , 1998, The Journal of Biological Chemistry.

[245]  M. Baker,et al.  Structure of Double-Shelled Rice Dwarf Virus , 1998, Journal of Virology.

[246]  M. Ruiz-Echevarría,et al.  The upf3 protein is a component of the surveillance complex that monitors both translation and mRNA turnover and affects viral propagation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[247]  S. Peltz,et al.  The Mof2/Sui1 Protein Is a General Monitor of Translational Accuracy , 1998, Molecular and Cellular Biology.

[248]  Michael W. Briggs,et al.  Rrp6p, the Yeast Homologue of the Human PM-Scl 100-kDa Autoantigen, Is Essential for Efficient 5.8 S rRNA 3′ End Formation* , 1998, The Journal of Biological Chemistry.

[249]  Z. Tallóczy,et al.  The [KIL-d] cytoplasmic genetic element of yeast results in epigenetic regulation of viral M double-stranded RNA gene expression. , 1998, Genetics.

[250]  D. Stuart,et al.  The atomic structure of the bluetongue virus core , 1998, Nature.

[251]  R. Wickner,et al.  The Gag Domain of the Gag-Pol Fusion Protein Directs Incorporation into the L-A Double-stranded RNA Viral Particles inSaccharomyces cerevisiae * , 1998, The Journal of Biological Chemistry.

[252]  R. Parker,et al.  The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex , 1998, The EMBO journal.

[253]  NAT 2 , an Essential Gene Encoding Methionine Na-Acetyltransferase in the Yeast Saccharomyces cerevisiae * , .