Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays

Ultra-thin anodic aluminum oxide (AAO) membranes are efficient templates for the fabrication of patterned nanostructures. Herein, a three-step etching method to control the morphology of AAO is described. The morphological evolution of the AAO during phosphoric acid etching is systematically investigated and a nonlinear growth mechanism during unsteady-state anodization is revealed. The thickness of the AAO can be quantitatively controlled from ∼100 nm to several micrometers while maintaining the tunablity of the pore diameter. The AAO membranes are robust and readily transferable to different types of substrates to prepare patterned plasmonic nanoarrays such as nanoislands, nanoclusters, ultra-small nanodots, and core-satellite superstructures. The localized surface plasmon resonance from these nanostructures can be easily tuned by adjusting the morphology of the AAO template. The custom AAO template provides a platform for the fabrication of low-cost and large-scale functional nanoarrays suitable for fundamental studies as well as applications including biochemical sensing, imaging, photocatalysis, and photovoltaics.

[1]  F. Keller,et al.  Structural Features of Oxide Coatings on Aluminum , 1953 .

[2]  M. Hunter,et al.  Determination of Barrier Layer Thickness of Anodic Oxide Coatings , 1954 .

[3]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[4]  Hideki Masuda,et al.  Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask , 1996 .

[5]  Kornelius Nielsch,et al.  Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina , 1998 .

[6]  Kazuyuki Nishio,et al.  Fabrication of Ordered Arrays of Multiple Nanodots Using Anodic Porous Alumina as an Evaporation Mask , 2000 .

[7]  M. Sander,et al.  Nanoparticle Arrays on Surfaces Fabricated Using Anodic Alumina Films as Templates , 2003 .

[8]  Michael Giersig,et al.  Shadow Nanosphere Lithography: Simulation and Experiment , 2004 .

[9]  Michael Giersig,et al.  Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks. , 2005, Small.

[10]  Younan Xia,et al.  Shape-Controlled Synthesis and Surface Plasmonic Properties of Metallic Nanostructures , 2005 .

[11]  T. Russell,et al.  Wetting Transition in Cylindrical Alumina Nanopores with Polymer Melts , 2006 .

[12]  Kornelius Nielsch,et al.  Fast fabrication of long-range ordered porous alumina membranes by hard anodization , 2006, Nature materials.

[13]  Weiping Cai,et al.  Highly ordered nanostructures with tunable size, shape and properties : A new way to surface nano-patterning using ultra-thin alumina masks , 2007 .

[14]  H. Fredriksson,et al.  Hole–Mask Colloidal Lithography , 2007 .

[15]  Peter Nordlander,et al.  Plasmonic nanostructures: artificial molecules. , 2007, Accounts of chemical research.

[16]  Marin Alexe,et al.  Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch-2 density. , 2008, Nature nanotechnology.

[17]  M. Sepaniak,et al.  Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. , 2008, ACS nano.

[18]  Harry A. Atwater,et al.  Plasmonic nanoparticle enhanced light absorption in GaAs solar cells , 2008 .

[19]  W. Misiolek,et al.  Effect of Processing Parameters on Pore Structure and Thickness of Anodic Aluminum Oxide (AAO) Tubular Membranes. , 2008, Journal of membrane science.

[20]  Wenjun Zhang,et al.  Controlled assembly of highly Raman-enhancing silver nanocap arrays templated by porous anodic alumina membranes. , 2009, Small.

[21]  C. Mijangos,et al.  Tailored polymer-based nanofibers and nanotubes by means of different infiltration methods into alumina nanopores. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[22]  Martin Moskovits,et al.  Photoelectrochemical performance of CdSe nanorod arrays grown on a transparent conducting substrate. , 2009, Nano letters.

[23]  Minghong Wu,et al.  Ultrathin alumina membranes for surface nanopatterning in fabricating quantum-sized nanodots. , 2010, Small.

[24]  Bai Yang,et al.  Colloidal Self‐Assembly Meets Nanofabrication: From Two‐Dimensional Colloidal Crystals to Nanostructure Arrays , 2010, Advanced materials.

[25]  Yannick Sonnefraud,et al.  Controlling light localization and light-matter interactions with nanoplasmonics. , 2010, Small.

[26]  Shikuan Yang,et al.  Surface patterning using templates: concept, properties and device applications. , 2011, Chemical Society reviews.

[27]  Derek Fawcett,et al.  Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development , 2011, Materials.

[28]  C. Mijangos,et al.  Tailored polymer-based nanorods and nanotubes by "template synthesis": From preparation to applications , 2012 .

[29]  J. Dionne,et al.  Quantum plasmon resonances of individual metallic nanoparticles , 2012, Nature.

[30]  D. O’Carroll,et al.  Light-management in ultra-thin polythiophene films using plasmonic monopole nanoantennas , 2012 .

[31]  Ruth Pachter,et al.  Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography. , 2012, Nano letters.

[32]  Won Joon Cho,et al.  Ultrahigh-density array of silver nanoclusters for SERS substrate with high sensitivity and excellent reproducibility. , 2012, ACS nano.

[33]  Z. Yin,et al.  Fabrication of Graphene Nanomesh by Using an Anodic Aluminum Oxide Membrane as a Template , 2012, Advanced materials.

[34]  S. Singamaneni,et al.  "Clicked" plasmonic core-satellites: covalently assembled gold nanoparticles. , 2012, Chemical communications.

[35]  Marisol Martín-González,et al.  High-aspect-ratio and highly ordered 15-nm porous alumina templates. , 2013, ACS applied materials & interfaces.

[36]  Dusan Losic,et al.  Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications , 2013 .

[37]  Cherie R. Kagan,et al.  Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays. , 2013, ACS nano.

[38]  Aaron R. Halpern,et al.  Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances. , 2013, ACS nano.

[39]  Dusan Losic,et al.  Nanoporous Anodic Alumina Platforms: Engineered Surface Chemistry and Structure for Optical Sensing Applications , 2014, Sensors.

[40]  Z. Fan,et al.  Morphology Defects Guided Pore Initiation during the Formation of Porous Anodic Alumina. , 2014, ACS applied materials & interfaces.

[41]  W. Lee,et al.  Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. , 2014, Chemical reviews.

[42]  Peter Nordlander,et al.  Aluminum for plasmonics. , 2014, ACS nano.

[43]  Diana C. Leitao,et al.  Nanoporous alumina as templates for multifunctional applications , 2014 .

[44]  George M Whitesides,et al.  Engineering shadows to fabricate optical metasurfaces. , 2014, ACS nano.

[45]  Ibrahim Abdulhalim,et al.  Plasmonic sensing using metallic nano-sculptured thin films. , 2014, Small.

[46]  J. Prikulis,et al.  Ultrathin Anodic Aluminum Oxide Membranes for Production of Dense Sub-20 nm Nanoparticle Arrays , 2014 .

[47]  Y. Lei,et al.  Facile Transferring of Wafer-Scale Ultrathin Alumina Membranes onto Substrates for Nanostructure Patterning. , 2015, ACS nano.

[48]  Vincent M Rotello,et al.  Disposable Plasmonics: Plastic Templated Plasmonic Metamaterials with Tunable Chirality , 2015, Advanced materials.

[49]  Hong-Son Chu,et al.  Second-Harmonic Generation from Sub-5 nm Gaps by Directed Self-Assembly of Nanoparticles onto Template-Stripped Gold Substrates. , 2015, Nano letters.

[50]  Koray Aydin,et al.  Unidirectional Lasing from Template-Stripped Two-Dimensional Plasmonic Crystals. , 2015, ACS nano.

[51]  Shan X. Wang,et al.  High-Density 2D Homo- and Hetero- Plasmonic Dimers with Universal Sub-10-nm Gaps. , 2015, ACS nano.

[52]  J. Torkelson,et al.  Poly(methyl methacrylate) nanotubes in AAO templates: Designing nanotube thickness and characterizing the Tg-confinement effect by DSC , 2016 .

[53]  M. Käll,et al.  Continuous‐Gradient Plasmonic Nanostructures Fabricated by Evaporation on a Partially Exposed Rotating Substrate , 2016, Advanced materials.

[54]  A review on the progress of polymer nanostructures with modulated morphologies and properties, using nanoporous AAO templates , 2016, 1706.08069.