Characterisation of proton exchange membrane fuel cell (PEMFC) failures via electrochemical impedance spectroscopy

Abstract Two PEMFC failure modes (dehydration and flooding) were investigated using in situ electrochemical impedance spectroscopy (EIS) on a four-cell stack under load. The EIS measurements were made at different temperatures (70 and 80 °C), covering the current density range 0.1–1.0 A cm−2, and the frequency range 0.1–2 × 105 Hz. Dehydration and flooding effects were observed in the frequency ranges 0.5–105 and 0.5–102 Hz, respectively. We propose that impedance measurements at separate frequency ranges (or narrow bands thereof) can be used to distinguish between flooding and dehydration events. Similar approaches may be used to diagnose other important PEMFC failures.

[1]  R. Duplessix,et al.  Phase separation in perfluorosulfonate ionomer membranes , 1982 .

[2]  J. Macdonald Theory of ac Space-Charge Polarization Effects in Photoconductors, Semiconductors, and Electrolytes , 1953 .

[3]  E. Gonzalez,et al.  Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte fuel cells , 2001 .

[4]  A. Jonscher,et al.  Physical basis of dielectric loss , 1975, Nature.

[5]  G. Gebel,et al.  Swelling study of perfluorosulphonated ionomer membranes , 1993 .

[6]  T. Springer,et al.  Characterization of polymer electrolyte fuel cells using ac impedance spectroscopy , 1996 .

[7]  Jianfu Ding,et al.  Ionic conductivity of proton exchange membranes , 2001 .

[8]  K. Darowicki Differential analysis of impedance data , 1998 .

[9]  K. Rossberg,et al.  Electrochemical impedance spectroscopy on conducting polymer membranes , 1999 .

[10]  P. Tomczyk,et al.  Investigation of the oxygen electrode reaction in basic molten carbonates using electrochemical impedance spectroscopy , 2001 .

[11]  T. Pajkossy,et al.  Tafel current at fractal electrodes: Connection with admittance spectra , 1990 .

[12]  W. Schnurnberger,et al.  Electrochemical impedance spectra of solid-oxide fuel cells and polymer membrane fuel cells , 1998 .

[13]  O. Schneider,et al.  Electrochemical impedance studies on oxidative degradation, overoxidative degradation, deactivation and reactivation of conducting polymers , 1999 .

[14]  R. Yeo Ion Clustering and Proton Transport in Nafion Membranes and Its Applications as Solid Polymer Electrolyte , 1983 .

[15]  W. Kenan,et al.  Impedance Spectroscopy: Emphasizing Solid Materials and Systems , 1987 .

[16]  T. Springer,et al.  Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells , 1993 .

[17]  M. Ciureanu,et al.  Electrochemical Impedance Study of Electrode‐Membrane Assemblies in PEM Fuel Cells: I. Electro‐oxidation of H 2 and H 2 / CO Mixtures on Pt‐Based Gas‐Diffusion Electrodes , 1999 .

[18]  S. Litster,et al.  PEM fuel cell electrodes , 2004 .

[19]  T. Nguyen,et al.  The rate of isothermal hydration of polyperfluorosulfonic acid membranes , 1998 .

[20]  J. C. Amphlett,et al.  Incorporation of voltage degradation into a generalised steady state electrochemical model for a PEM fuel cell , 2002 .

[21]  H. Yeager,et al.  Perfluorinated Ionomer Membranes , 1982 .

[22]  T. Springer,et al.  Modelistic interpretation of the power response of a polymer electrolyte fuel cell , 1998 .

[23]  A. Lehmani,et al.  Surface morphology of Nafion 117 membrane by tapping mode atomic force microscope , 1998 .

[24]  T. Springer,et al.  A Comparative Study of Water Uptake By and Transport Through Ionomeric Fuel Cell Membranes , 1993 .

[25]  J. Ross Macdonald,et al.  Simplified impedance/frequency‐response results for intrinsically conducting solids and liquids , 1974 .

[26]  N. Wagner,et al.  Production and Characterization of Vacuum Plasma Sprayed Anodes for Solid Oxide Fuel Cells. , 1997 .

[27]  Mariana Ciureanu and,et al.  Electrochemical Impedance Study of PEM Fuel Cells. Experimental Diagnostics and Modeling of Air Cathodes , 2001 .

[28]  D. Franceschetti,et al.  DIFFUSION OF NEUTRAL AND CHARGED SPECIES UNDER SMALL- SIGNAL A.C. CONDITIONS * , 1979 .

[29]  J. Fontanella,et al.  Complex Impedance Measurements on Nafion. , 1998 .

[30]  G. Spinolo,et al.  Data Processing for Electrochemical Measurements with Frequency Response Analyzers I . Error Analysis and Accuracy Tests , 1988 .

[31]  J. Ross Macdonald,et al.  Note on the parameterization of the constant-phase admittance element , 1984 .

[32]  V. Antonucci,et al.  A.c.-impedance spectroscopy study of oxygen reduction at Nafion® coated gas-diffusion electrodes in sulphuric acid: Teflon loading and methanol cross-over effects , 1993 .

[33]  J. Macdonald Electrical Response of Materials Containing Space Charge with Discharge at the Electrodes , 1971 .

[34]  Signe Kjelstrup,et al.  Transport and equilibrium properties of Nafion® membranes with H+ and Na+ ions , 1998 .

[35]  J. E. Bauerle Study of solid electrolyte polarization by a complex admittance method , 1969 .

[36]  J. Song,et al.  Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method , 2001 .

[37]  J. Diard,et al.  Control of A Running H2/02 Fuel Cell With Filled Polymeric Membranes by IMPEDANCE SPECTROSCOPY , 1999 .

[38]  M. Covitch,et al.  Solubility Characteristics of Perfluorinated Polymers with Sulfonyl Fluoride Functionality , 1984 .

[39]  A. Oikonomou,et al.  Influence of the water content on the kinetics of counter-ion transport in perfluorosulphonic membranes , 1990 .

[40]  A. Eisenberg,et al.  Physical properties and supermolecular structure of perfluorinated ion‐containing (nafion) polymers , 1977 .

[41]  Kent B. Pfeifer,et al.  Characteristics and Mechanisms in Ion-Conducting Polymer Films as Chemical Sensors , 2000 .

[42]  A. J. Appleby,et al.  Design equations for optimized PEM fuel cell electrodes , 2000 .

[43]  Tohru Kato,et al.  Influence of cell configuration on measuring interfacial impedances between a solid electrolyte and an electrode , 2000 .

[44]  S. Srinivasan,et al.  Measurements of proton conductivity in the active layer of PEM fuel cell gas diffusion electrodes , 1998 .

[45]  Donald R. Sadoway,et al.  A high-accuracy, calibration-free technique for measuring the electrical conductivity of liquids , 1998 .

[46]  J. Macdonald The impedance of a galvanic cell with two plane-parallel electrodes at a short distance , 1971 .

[47]  D. Franceschetti,et al.  Theory of small‐signal ac response of solids and liquids with recombining mobile charge , 1978 .

[48]  Salvador Mafé,et al.  Electric field enhanced water dissociation at the bipolar membrane junction from ac impedance spectra measurements , 1998 .

[49]  S. Pyun,et al.  A study of oxygen reduction on platinum-dispersed porous carbon electrodes at room and elevated temperatures by using a.c. impedance spectroscopy , 1996 .

[50]  Charles R. Martin,et al.  The Platinum Microelectrode/Nafion Interface: An Electrochemical Impedance Spectroscopic Analysis of Oxygen Reduction Kinetics and Nafion Characteristics , 1992 .

[51]  T. E. Springer,et al.  Electrical Impedance of a Pore Wall for the Flooded‐Agglomerate Model of Porous Gas‐Diffusion Electrodes , 1989 .

[52]  A high-accuracy, calibration-free technique for measuring the electrical conductivity of molten oxides , 1997 .

[53]  Peter Urban,et al.  Impedance studies on direct methanol fuel cell anodes , 1999 .

[54]  P. Fedkiw,et al.  Nafion®-based composite polymer electrolyte membranes , 1998 .

[55]  Rongnong Zhou,et al.  AC-impedance-based chemical sensors for organic solvent vapors , 1996 .

[56]  Peter Urban,et al.  Characterization of direct methanol fuel cells by ac impedance spectroscopy , 1998 .

[57]  F. C. Wilson,et al.  The morphology in nafion† perfluorinated membrane products, as determined by wide- and small-angle x-ray studies , 1981 .

[58]  Shimshon Gottesfeld,et al.  Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes , 1991 .

[59]  S. Primdahl Gas Conversion Impedance: SOFC Anodes in H2/H2O Atmospheres , 1997 .

[60]  Z. Qi,et al.  Electrochemical Impedance Study of Membrane−Electrode Assemblies in PEM Fuel Cells. II. Electrooxidation of H2 And H2/Co Mixtures on Pt/Ru-Based Gas-Diffusion Electrodes , 1999 .

[61]  K. Cole,et al.  Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics , 1941 .

[62]  A. Eisenberg Clustering of Ions in Organic Polymers. A Theoretical Approach , 1970 .

[63]  Investigations into the Kinetics of the Ni-YSZ-Cermet-Anode of a Solid Oxide Fuel Cell , 1997 .

[64]  J. Diard,et al.  Linear diffusion impedance. General expression and applications , 1999 .

[65]  Kent B. Pfeifer,et al.  Characteristics and Mechanisms in Ion-Conducting Polymer Films as Chemical Sensors Polyethyleneoxide , 2001 .

[66]  Impedance of the Hydrogen Polymer Fuel Cell Electrode. Theory and Experiments , 2000 .

[67]  Jean-Paul Diard,et al.  Impedance measurements of polymer electrolyte membrane fuel cells running on constant load , 1998 .

[68]  Mahlon Wilson,et al.  A printed circuit board approach to measuring current distribution in a fuel cell , 1998 .

[69]  J. Macdonald BINARY ELECTROLYTE SMALL-SIGNAL FREQUENCY RESPONSE , 1974 .

[70]  Gérald Pourcelly,et al.  AC impedance investigation of the kinetics of ion transport in Nafion® perfluorosulfonic membranes , 1989 .

[71]  S. Greenbaum,et al.  Electrical Conductivity and NMR Studies of Methanol/Water Mixtures in Nafion Membranes. , 1998 .

[72]  Koichi Kobayashi,et al.  Characterization of CO tolerance of PEMFC by ac impedance spectroscopy , 2001 .

[73]  Felix N. Büchi,et al.  Operating Proton Exchange Membrane Fuel Cells Without External Humidification of the Reactant Gases Fundamental Aspects , 1997 .