A multimodal logic for closeness

Abstract We introduce a multimodal logic for order of magnitude reasoning which considers a new logic-based alternative to the notion of closeness, we provide an axiom system and prove its soundness and completeness.

[1]  Philippe Balbiani,et al.  Reasoning about negligibility and proximity in the set of all hyperreals , 2016, J. Appl. Log..

[2]  Manuel Ojeda-Aciego,et al.  A Multimodal Logic Approach to Order of Magnitude Qualitative Reasoning with Comparability and Negligibility Relations , 2005, Fundam. Informaticae.

[3]  Emilio Muñoz-Velasco,et al.  Order of Magnitude Qualitative Reasoning with Bidirectional Negligibility , 2005, CAEPIA.

[4]  P. Balbiani Reasoning about negligibility and proximity , 2013 .

[5]  Emilio Muñoz-Velasco,et al.  A Hybrid Approach to Closeness in the Framework of Order of Magnitude Qualitative Reasoning , 2016, HAIS.

[6]  Olivier Raiman,et al.  Order of Magnitude Reasoning , 1986, Artif. Intell..

[7]  Emilio Muñoz-Velasco,et al.  Relational approach for a logic for order of magnitude qualitative reasoning with negligibility, non-closeness and distance , 2009, Log. J. IGPL.

[8]  Didier Dubois,et al.  Granular computing with closeness and negligibility relations , 2002 .

[9]  M. Ojeda‐Aciego,et al.  Magnitude qualitative reasoning via PDL , 2009 .

[10]  Núria Agell,et al.  Relative and absolute order-of-magnitude models unified , 2005, Annals of Mathematics and Artificial Intelligence.

[11]  Didier Dubois,et al.  Qualitative reasoning based on fuzzy relative orders of magnitude , 2003, IEEE Trans. Fuzzy Syst..

[12]  John P. Burgess,et al.  Basic Tense Logic , 1984 .

[13]  Lotfi A. Zadeh,et al.  Fuzzy sets and information granularity , 1996 .