Local time stepping with adaptive time step control for a two-phase fluid system

Resume. Cet article aborde la question de l'utilisation efficace des maillages adaptatifs en vue de simuler correctement le transport des fronts sur des temps longs avec un cout CPU raisonnable. Ces singularites proviennent des systemes de lois de conservation modelisant lesdiphasiques ` travers les conduites petrolieres. Nous proposons non seulement un cadre multiresolution afin d'ajuster le pas d'espacela regularite locale de la solution, mais aussi une strategie de pas de temps local afin d'alleger les contraintes duesla condition CFL de stabilite. Nous examinerons plus particulierement le choix optimal des micro pas de tempsl'interieur d'un macro pas de temps. Nous presentons les simulations numeriques pour illustrer l'efficacite des methodes preconisees. Abstract. This paper is concerned with how to make effective use of adaptive grids to correctly simulate the transportation of fronts over a long range of time under reasonable CPU time. These step gradients arise from systems of conservation laws modelling two-phase flows in pipelines. We propose not only a multi-resolution setup in order to adapt the space grid to the local smoothness of the solution, but also a local time stepping strategy in order to alleviate the constraints due to the CFL stability condition. A special focus is given to the optimal choice of micro time steps within a macro time step. Numerical simulations are presented to illustrate the efficiency of the methods put forward.

[1]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[2]  A. Harten Multiresolution algorithms for the numerical solution of hyperbolic conservation laws , 2010 .

[3]  Kai Schneider,et al.  Space--time adaptive multiresolution methods for hyperbolic conservation laws: Applications to compressible Euler equations , 2009 .

[4]  S. Osher,et al.  Numerical approximations to nonlinear conservation laws with locally varying time and space grids , 1983 .

[5]  Kai Schneider,et al.  An adaptive multiresolution scheme with local time stepping for evolutionary PDEs , 2008, J. Comput. Phys..

[6]  Siegfried Müller,et al.  Fully Adaptive Multiscale Schemes for Conservation Laws Employing Locally Varying Time Stepping , 2007, J. Sci. Comput..

[7]  A. Huerta,et al.  Arbitrary Lagrangian–Eulerian Methods , 2004 .

[8]  Siegfried Müller,et al.  Adaptive Multiscale Schemes for Conservation Laws , 2002, Lecture Notes in Computational Science and Engineering.

[10]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[11]  Albert Cohen,et al.  Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..

[12]  Frédéric Coquel,et al.  A relaxation multiresolution scheme for accelerating realistic two‐phase flows calculations in pipelines , 2007 .

[13]  Frédéric Coquel,et al.  Multiresolution technique and explicit–implicit scheme for multicomponent flows , 2006, J. Num. Math..

[14]  Quang Long Nguyen Adaptation dynamique de maillage pour les écoulements diphasiques en conduites pétrolières : Application à la simulation des phénomènes de terrain slugging et severe slugging , 2009 .

[15]  Siegfried Müller,et al.  Numerical simulation of a single bubble by compressible two‐phase fluids , 2009 .

[16]  Siegfried Müller,et al.  Solution of shallow water equations using fully adaptive multiscale schemes , 2005 .

[17]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[18]  Gerald Warnecke,et al.  A Class of High Resolution Difference Schemes for Nonlinear Hamilton-Jacobi Equations with Varying Time and Space Grids , 2005, SIAM J. Sci. Comput..

[19]  Roland Masson,et al.  A relaxation method for two-phase flow models with hydrodynamic closure law , 2005, Numerische Mathematik.

[20]  Frédéric Coquel,et al.  Entropy-satisfying relaxation method with large time-steps for Euler IBVPs , 2010, Math. Comput..

[21]  Frédéric Coquel,et al.  Local Time Stepping for Implicit-Explicit Methods on Time Varying Grids , 2008 .