Efficient simulation of large bodies of water by coupling two and three dimensional techniques

We present a new method for the efficient simulation of large bodies of water, especially effective when three-dimensional surface effects are important. Similar to a traditional two-dimensional height field approach, most of the water volume is represented by tall cells which are assumed to have linear pressure profiles. In order to avoid the limitations typically associated with a height field approach, we simulate the entire top surface of the water volume with a state of the art, fully three-dimensional Navier-Stokes free surface solver. Our philosophy is to use the best available method near the interface (in the three-dimensional region) and to coarsen the mesh away from the interface for efficiency. We coarsen with tall, thin cells (as opposed to octrees or AMR), because they maintain good resolution horizontally allowing for accurate representation of bottom topography.

[1]  Darwyn R. Peachey,et al.  Modeling waves and surf , 1986, SIGGRAPH.

[2]  Alain Fournier,et al.  A simple model of ocean waves , 1986, SIGGRAPH.

[3]  Gary Mastin,et al.  Fourier Synthesis of Ocean Scenes , 1987, IEEE Computer Graphics and Applications.

[4]  Brian A. Barsky,et al.  Modeling and rendering waves: wave-tracing using beta-splines and reflective and refractive texture mapping. , 1987, TOGS.

[5]  Gavin S. P. Miller,et al.  Rapid, stable fluid dynamics for computer graphics , 1990, SIGGRAPH.

[6]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[7]  Jim X. Chen,et al.  Toward Interactive-Rate Simulation of Fluids with Moving Obstacles Using Navier-Stokes Equations , 1995, CVGIP Graph. Model. Image Process..

[8]  Jessica K. Hodgins,et al.  Dynamic simulation of splashing fluids , 1995, Proceedings Computer Animation'95.

[9]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[10]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[11]  Dimitris N. Metaxas,et al.  Modeling the motion of a hot, turbulent gas , 1997, SIGGRAPH.

[12]  Dimitris N. Metaxas,et al.  Controlling fluid animation , 1997, Proceedings Computer Graphics International.

[13]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[14]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[15]  Jean-Michel Dischler,et al.  Ocean waves synthesis using a spectrum-based turbulence function , 2000, Proceedings Computer Graphics International 2000.

[16]  Fabrice Neyret,et al.  Phenomenological simulation of brooks , 2001 .

[17]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[18]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[19]  Sébastien Thon,et al.  A semi-physical model of running waters , 2001 .

[20]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..

[21]  Marie-Paule Cani,et al.  Interactive animation of ocean waves , 2002, SCA '02.

[22]  Takahiro Saito,et al.  Realistic Animation of Fluid with Splash and Foam , 2003, Comput. Graph. Forum.

[23]  Ronald Fedkiw,et al.  Computational aspects of dynamic surfaces , 2003 .

[24]  Ross T. Whitaker,et al.  A Level-Set Approach to 3D Reconstruction from Range Data , 1998, International Journal of Computer Vision.

[25]  William V. Baxter,et al.  A viscous paint model for interactive applications , 2004, Comput. Animat. Virtual Worlds.

[26]  William V. Baxter,et al.  IMPaSTo: a realistic, interactive model for paint , 2004, NPAR '04.

[27]  J. Tessendorf Simulating Ocean Water , 2004 .

[28]  Frank Losasso,et al.  Simulating water and smoke with an octree data structure , 2004, SIGGRAPH 2004.

[29]  David E. Breen,et al.  Level set and PDE methods for computer graphics , 2004, SIGGRAPH '04.

[30]  Mark Carlson,et al.  Rigid fluid: animating the interplay between rigid bodies and fluid , 2004, SIGGRAPH 2004.

[31]  William V. Baxter,et al.  Haptic interaction with fluid media , 2004, Graphics Interface.

[32]  Ryo Sakaguchi,et al.  Growing up with fluid simulation on "The Day After Tomorrow" , 2004, SIGGRAPH '04.

[33]  Christopher Batty,et al.  RLE sparse level sets , 2004, SIGGRAPH '04.

[34]  Dimitris N. Metaxas,et al.  Animation and control of breaking waves , 2004, SCA '04.

[35]  Z. Popovic,et al.  Fluid control using the adjoint method , 2004, SIGGRAPH 2004.

[36]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, SIGGRAPH 2004.

[37]  Ben Houston,et al.  The tar monster: creating a character with fluid simulation , 2004, SIGGRAPH '04.

[38]  Andrew Selle,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[39]  G. Turk,et al.  Water drops on surfaces , 2005, SIGGRAPH 2005.

[40]  Ken Museth,et al.  Gigantic deformable surfaces , 2005, SIGGRAPH '05.

[41]  Yizhou Yu,et al.  Taming liquids for rapidly changing targets , 2005, SCA '05.

[42]  Jeong-Mo Hong,et al.  Discontinuous fluids , 2005, SIGGRAPH 2005.

[43]  E. Guendelman,et al.  Coupling water and smoke to thin deformable and rigid shells , 2005, SIGGRAPH 2005.

[44]  Yongning Zhu,et al.  Animating sand as a fluid , 2005, SIGGRAPH 2005.

[45]  Ken Museth,et al.  Hierarchical RLE level set: A compact and versatile deformable surface representation , 2006, TOGS.

[46]  Ken Museth,et al.  Dynamic Tubular Grid: An Efficient Data Structure and Algorithms for High Resolution Level Sets , 2006, J. Sci. Comput..