Bandwidth and information in the design and analysis of polarimeters

Polarimeters operate by making polarization-dependent alterations in the intensity of the optical field. Modulated polarimeters introduce controlled fluctuations as a function of time, spatial position, wavelength, angle of incidence, or any other independent variable. These fluctuations create channels in frequency space that can be used to carry the polarimetric information. Since polarimeters are then inherently multiplexed information systems, issues of noise, bandwidth, channel cross-talk, and system conditioning become immediately important. This paper reviews much of the work over the past two decades on polarimeter design, and presents some of the most recent work on hybrid and non-periodic modulation schemes that hold out potential for maximizing system bandwidth.

[1]  J Scott Tyo,et al.  Band limited data reconstruction in modulated polarimeters. , 2011, Optics express.

[2]  Kazuhiko Oka,et al.  Snapshot imaging Mueller matrix polarimeter using polarization gratings. , 2012, Optics letters.

[3]  J Scott Tyo,et al.  Review of passive imaging polarimetry for remote sensing applications. , 2006, Applied optics.

[4]  Robert Walraven,et al.  Polarization Imagery , 1977, Optics & Photonics.

[5]  François Goudail,et al.  Optimization of the contrast in polarimetric scalar images. , 2009, Optics letters.

[6]  David B. Chenault,et al.  A division of aperture MWIR imaging polarimeter , 2005, SPIE Optics + Photonics.

[7]  Daniel Dolfi,et al.  General state contrast imaging: an optimized polarimetric imaging modality insensitive to spatial intensity fluctuations. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  J. Scott Tyo,et al.  Spatio-temporal modulated polarimetry , 2011, Optical Engineering + Applications.

[9]  J. Tyo Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error. , 2002, Applied optics.

[10]  Israel J. Vaughn,et al.  A portable imaging Mueller matrix polarimeter based on a spatio-temporal modulation approach: theory and implementation , 2015, SPIE Optical Engineering + Applications.

[11]  J. C. del Toro Iniesta,et al.  Optimum modulation and demodulation matrices for solar polarimetry. , 2000, Applied optics.

[12]  Lawrence B. Wolff,et al.  Surface Orientation From Polarization Images , 1988, Other Conferences.

[13]  Larry Pezzaniti,et al.  Prismatic imaging polarimeter calibration for the infrared spectral region. , 2008, Optics express.

[14]  Kazuhiko Oka,et al.  Spectroscopic polarimeter based on optical frequency-domain interferometry , 1999, Other Conferences.

[15]  K. Oka,et al.  Spectroscopic polarimetry with a channeled spectrum. , 1999, Optics letters.

[16]  K. Oka,et al.  Compact complete imaging polarimeter using birefringent wedge prisms. , 2003, Optics express.

[17]  J. S. Tyo,et al.  Optimum linear combination strategy for an N-channel polarization-sensitive imaging or vision system , 1998 .

[18]  Matthew H. Smith,et al.  Optimization of a dual-rotating-retarder Mueller matrix polarimeter. , 2002, Applied optics.

[19]  Bradley M. Ratliff,et al.  Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters. , 2009, Optics letters.

[20]  J. Scott Tyo,et al.  Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters , 2008 .

[21]  J Scott Tyo,et al.  Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery. , 2009, Optics express.

[22]  J Scott Tyo,et al.  Polarization components analysis for invariant discrimination. , 2007, Applied optics.

[23]  Bernard Le Jeune,et al.  Snapshot Mueller matrix polarimeter by wavelength polarization coding. , 2007, Optics express.

[24]  Frans Snik,et al.  A multi-domain full-Stokes polarization modulator that is efficient for 300-2500nm spectropolarimetry , 2015, SPIE Optical Engineering + Applications.

[25]  Eustace L. Dereniak,et al.  Snapshot Mueller matrix spectropolarimeter , 2007 .

[26]  J. Scott Tyo,et al.  Colorimetric representations for use with polarization-difference imaging of objects in scattering media , 1998 .

[27]  G. S. Phipps,et al.  Optimization of retardance for a complete Stokes polarimeter. , 2000, Optics letters.

[28]  Kazuhiko Oka,et al.  Snapshot Mueller-matrix spectropolarimeter using spectral and spatial carriers , 2015, SPIE Optical Engineering + Applications.

[29]  J Scott Tyo,et al.  Generalized channeled polarimetry. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[30]  J Scott Tyo,et al.  Data interpretation for spectral sensors with correlated bands. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  François Goudail,et al.  Optimization of the contrast in active Stokes images. , 2009, Optics letters.

[32]  J Scott Tyo,et al.  Role of the null space of the DRM in the performance of modulated polarimeters. , 2012, Optics letters.

[33]  A. Goetz,et al.  Terrestrial imaging spectroscopy , 1988 .

[34]  G. D. Bernard,et al.  Functional similarities between polarization vision and color vision , 1977, Vision Research.

[35]  Zhipeng Wang,et al.  Design and optimization of partial Mueller matrix polarimeters. , 2010, Applied optics.

[36]  Andrey S Alenin,et al.  Structured decomposition design of partial Mueller matrix polarimeters. , 2015, Journal of the Optical Society of America. A, Optics, image science, and vision.

[37]  Eustace L. Dereniak,et al.  Figures of merit for complete Stokes polarimeter optimization , 2000, SPIE Optics + Photonics.

[38]  A. Ambirajan,et al.  Optimum Angles for a Polarimeter: Part II , 1995 .

[39]  Michael W. Kudenov,et al.  False signature reduction in channeled spectropolarimetry , 2010 .

[40]  L. B. Wolff Polarization camera for computer vision with a beam splitter , 1994 .

[41]  R. Chipman,et al.  Optimization of Mueller matrix polarimeters in the presence of error sources. , 2008, Optics express.

[42]  J Scott Tyo,et al.  Generalized signal-to-noise ratio for spectral sensors with correlated bands. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.