Unique organization and unprecedented diversity of the Bacteroides (Pseudobacteroides) cellulosolvens cellulosome system

[1]  Lior Artzi,et al.  Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides , 2016, Nature Reviews Microbiology.

[2]  B. Henrissat,et al.  Broad phylogeny and functionality of cellulosomal components in the bovine rumen microbiome , 2016, Environmental microbiology.

[3]  J. Liao,et al.  Fuelling the future: microbial engineering for the production of sustainable biofuels , 2016, Nature Reviews Microbiology.

[4]  Yali Cao,et al.  Enhancing anaerobic digestion of lignocellulosic materials in excess sludge by bioaugmentation and pre-treatment. , 2016, Waste management.

[5]  E. Bayer,et al.  Enzymatic profiling of cellulosomal enzymes from the human gut bacterium, Ruminococcus champanellensis, reveals a fine-tuned system for cohesin-dockerin recognition. , 2016, Environmental microbiology.

[6]  Qi Xu,et al.  Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities , 2016, Science Advances.

[7]  Sagar M. Utturkar,et al.  Near-Complete Genome Sequence of the Cellulolytic Bacterium Bacteroides (Pseudobacteroides) cellulosolvens ATCC 35603 , 2015, Genome Announcements.

[8]  B. White,et al.  Ruminococcal cellulosome systems from rumen to human. , 2015, Environmental microbiology.

[9]  E. Bayer,et al.  Standalone cohesin as a molecular shuttle in cellulosome assembly , 2015, FEBS letters.

[10]  E. Bayer,et al.  Clostridium clariflavum: Key Cellulosome Players Are Revealed by Proteomic Analysis , 2015, mBio.

[11]  E. Bayer,et al.  Combined Crystal Structure of a Type I Cohesin , 2015, The Journal of Biological Chemistry.

[12]  B. Henrissat,et al.  Rumen Cellulosomics: Divergent Fiber-Degrading Strategies Revealed by Comparative Genome-Wide Analysis of Six Ruminococcal Strains , 2014, PloS one.

[13]  E. Bayer,et al.  Cellulosomics of the cellulolytic thermophile Clostridium clariflavum , 2014, Biotechnology for Biofuels.

[14]  T. Fujita,et al.  Description of Anaerobacterium chartisolvens gen. nov., sp. nov., an obligately anaerobic bacterium from Clostridium rRNA cluster III isolated from soil of a Japanese rice field, and reclassification of Bacteroides cellulosolvens Murray et al. 1984 as Pseudobacteroides cellulosolvens gen. nov., comb , 2014, International journal of systematic and evolutionary microbiology.

[15]  H. Fierobe,et al.  Characterization of All Family-9 Glycoside Hydrolases Synthesized by the Cellulosome-producing Bacterium Clostridium cellulolyticum* , 2014, The Journal of Biological Chemistry.

[16]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[17]  E. Shapiro,et al.  A synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substrates , 2013, Biotechnology for Biofuels.

[18]  E. Bayer,et al.  Intramolecular clasp of the cellulosomal Ruminococcus flavefaciens ScaA dockerin module confers structural stability☆ , 2013, FEBS open bio.

[19]  B. White,et al.  Crystal Structure of an Uncommon Cellulosome-Related Protein Module from Ruminococcus flavefaciens That Resembles Papain-Like Cysteine Peptidases , 2013, PloS one.

[20]  Christopher L. Hemme,et al.  Genome-wide analysis of acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system , 2012, BMC Genomics.

[21]  Miriam L. Land,et al.  Draft Genome Sequences for Clostridium thermocellum Wild-Type Strain YS and Derived Cellulose Adhesion-Defective Mutant Strain AD2 , 2012, Journal of bacteriology.

[22]  E. Bayer,et al.  High-throughput screening of cohesin mutant libraries on cellulose microarrays. , 2012, Methods in enzymology.

[23]  E. Bayer,et al.  Designer cellulosomes for enhanced hydrolysis of cellulosic substrates. , 2012, Methods in enzymology.

[24]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[25]  A. Travis,et al.  Abundance and Diversity of Dockerin-Containing Proteins in the Fiber-Degrading Rumen Bacterium, Ruminococcus flavefaciens FD-1 , 2010, PloS one.

[26]  Harry J. Gilbert,et al.  Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. , 2010, Annual review of biochemistry.

[27]  B. Henrissat,et al.  Modulation of cellulosome composition in Clostridium cellulolyticum: Adaptation to the polysaccharide environment revealed by proteomic and carbohydrate‐active enzyme analyses , 2010, Proteomics.

[28]  K. Nelson,et al.  The FibRumBa Database: A Resource for Biologists with Interests in Gastrointestinal Microbial Ecology, Plant Biomass Degradation, and Anaerobic Microbiology , 2010, Microbial Ecology.

[29]  K. Sakka,et al.  Functional insights into the role of novel type I cohesin and dockerin domains from Clostridium thermocellum. , 2009, The Biochemical journal.

[30]  Alvaro G. Hernandez,et al.  Diversity and Strain Specificity of Plant Cell Wall Degrading Enzymes Revealed by the Draft Genome of Ruminococcus flavefaciens FD-1 , 2009, PloS one.

[31]  H. Fierobe,et al.  The cellulosomes from Clostridium cellulolyticum , 2009, The FEBS journal.

[32]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[33]  Raphael Lamed,et al.  Cellulosome gene cluster analysis for gauging the diversity of the ruminal cellulolytic bacterium Ruminococcus flavefaciens. , 2008, FEMS microbiology letters.

[34]  Edward A Bayer,et al.  The Clostridium cellulolyticum Dockerin Displays a Dual Binding Mode for Its Cohesin Partner* , 2008, Journal of Biological Chemistry.

[35]  E. Bayer,et al.  Cohesin‐dockerin microarray: Diverse specificities between two complementary families of interacting protein modules , 2008, Proteomics.

[36]  M. Himmel,et al.  The potential of cellulases and cellulosomes for cellulosic waste management. , 2007, Current opinion in biotechnology.

[37]  Edward A Bayer,et al.  Evidence for a dual binding mode of dockerin modules to cohesins , 2007, Proceedings of the National Academy of Sciences.

[38]  Raphael Lamed,et al.  Conservation and Divergence in Cellulosome Architecture between Two Strains of Ruminococcus flavefaciens , 2006, Journal of bacteriology.

[39]  K. Sakka,et al.  Binding of S-layer homology modules from Clostridium thermocellum SdbA to peptidoglycans , 2006, Applied Microbiology and Biotechnology.

[40]  Michael J. Shulman,et al.  Novel architecture of family-9 glycoside hydrolases identified in cellulosomal enzymes of Acetivibrio cellulolyticus and Clostridium thermocellum. , 2006, FEMS microbiology letters.

[41]  E. Bayer,et al.  Matching fusion protein systems for affinity analysis of two interacting families of proteins: the cohesin–dockerin interaction , 2005, Journal of molecular recognition : JMR.

[42]  B. Webb,et al.  Structural characterization of type II dockerin module from the cellulosome of Clostridium thermocellum: calcium-induced effects on conformation and target recognition. , 2005, Biochemistry.

[43]  E. Bayer,et al.  Cellulosome-like entities inBacteroides cellulosolvens , 2005, Current Microbiology.

[44]  M. Elliott,et al.  Expression, purification and structural characterization of the scaffoldin hydrophilic X-module from the cellulosome of Clostridium thermocellum. , 2004, Protein expression and purification.

[45]  E. Bayer,et al.  The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. , 2004, Annual review of microbiology.

[46]  Raphael Lamed,et al.  Architecture of the Bacteroides cellulosolvens Cellulosome: Description of a Cell Surface-Anchoring Scaffoldin and a Family 48 Cellulase , 2004, Journal of bacteriology.

[47]  Raphael Lamed,et al.  The Cellulosome System of Acetivibrio cellulolyticus Includes a Novel Type of Adaptor Protein and a Cell Surface Anchoring Protein , 2003, Journal of bacteriology.

[48]  M. Himmel,et al.  The bacterial scaffoldin: structure, function and potential applications in the nanosciences. , 2003, Genetic engineering.

[49]  Raphael Lamed,et al.  Cohesin-Dockerin Interaction in Cellulosome Assembly , 2001, The Journal of Biological Chemistry.

[50]  Raphael Lamed,et al.  Cellulosomal Scaffoldin-Like Proteins fromRuminococcus flavefaciens , 2001, Journal of bacteriology.

[51]  Raphael Lamed,et al.  A Scaffoldin of the Bacteroides cellulosolvens Cellulosome That Contains 11 Type II Cohesins , 2000, Journal of bacteriology.

[52]  E. Bayer,et al.  Cohesin‐dockerin recognition in cellulosome assembly: Experiment versus hypothesis , 2000, Proteins.

[53]  Raphael Lamed,et al.  A Novel Cellulosomal Scaffoldin fromAcetivibrio cellulolyticus That Contains a Family 9 Glycosyl Hydrolase , 1999, Journal of bacteriology.

[54]  E. Bayer,et al.  Cellulosomes-structure and ultrastructure. , 1998, Journal of structural biology.

[55]  Tetsuya Kimura,et al.  Cloning and DNA Sequencing of the Genes EncodingClostridium josui Scaffolding Protein CipA and Cellulase CelD and Identification of Their Gene Products as Major Components of the Cellulosome , 1998, Journal of bacteriology.

[56]  E. Bayer,et al.  Species‐specificity of the cohesin‐dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: Prediction of specificity determinants of the dockerin domain , 1997, Proteins.

[57]  C. Tardif,et al.  Role of scaffolding protein CipC of Clostridium cellulolyticum in cellulose degradation , 1997, Journal of bacteriology.

[58]  E. Bayer,et al.  A cohesin domain from Clostridium thermocellum: the crystal structure provides new insights into cellulosome assembly. , 1997, Structure.

[59]  P Béguin,et al.  A new type of cohesin domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome-integrating protein CipA , 1996, Journal of bacteriology.

[60]  M. Wilchek,et al.  Expression, purification, and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellum , 1995, Applied and environmental microbiology.

[61]  P. Gounon,et al.  OlpB, a new outer layer protein of Clostridium thermocellum, and binding of its S-layer-like domains to components of the cell envelope , 1995, Journal of bacteriology.

[62]  D. Stahl,et al.  Acetivibrio cellulolyticus and Bacteroides cellulosolvens are members of the greater clostridial assemblage. , 1994, FEMS microbiology letters.

[63]  E. Bayer,et al.  The cellulosome--a treasure-trove for biotechnology. , 1994, Trends in biotechnology.

[64]  J. Aubert,et al.  Recognition specificity of the duplicated segments present in Clostridium thermocellum endoglucanase CelD and in the cellulosome-integrating protein CipA , 1994, Journal of bacteriology.

[65]  W Baumeister,et al.  Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis , 1994, Journal of bacteriology.

[66]  J. Aubert,et al.  Organization of a Clostridium thermocellum gene cluster encoding the cellulosomal scaffolding protein CipA and a protein possibly involved in attachment of the cellulosome to the cell surface , 1993, Journal of bacteriology.

[67]  A. Demain,et al.  Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL‐protein reveals an unusual degree of internal homology , 1993, Molecular microbiology.

[68]  A. Demain,et al.  Two components of an extracellular protein aggregate of Clostridium thermocellum together degrade crystalline cellulose , 1988 .

[69]  W. D. Murray Increased cellulose hydrolysis by Bacteroides cellulosolvens in a simplified synthetic medium , 1985 .

[70]  A. Khan,et al.  Conversion of cellulose to sugars by resting cells of a mesophilic anaerobe, Bacteriodes cellulosolvens , 1985, Biotechnology and bioengineering.

[71]  A. Khan,et al.  Cellulase and Sugar Formation by Bacteroides cellulosolvens, a Newly Isolated Cellulolytic Anaerobe , 1984, Applied and environmental microbiology.

[72]  W. D. Murray,et al.  Bacteroides cellulosolvens sp. nov., a Cellulolytic Species from Sewage Sludge† , 1984 .

[73]  E Setter,et al.  Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum , 1983, Journal of bacteriology.