A Monte Carlo study of old and new frontier methods for efficiency measurement

This study presents the results of an extensive Monte Carlo experiment to compare different methods of efficiency analysis. In addition to traditional parametric–stochastic and nonparametric–deterministic methods recently developed robust nonparametric–stochastic methods are considered. The experimental design comprises a wide variety of situations with different returns-to-scale regimes, substitution elasticities and outlying observations. As the results show, the new robust nonparametric–stochastic methods should not be used without cross-checking by other methods like stochastic frontier analysis or data envelopment analysis. These latter methods appear quite robust in the experiments.

[1]  Daniel Santín,et al.  How to generate regularly behaved production data? A Monte Carlo experimentation on DEA scale efficiency measurement , 2009, Eur. J. Oper. Res..

[2]  Léopold Simar,et al.  Introducing Environmental Variables in Nonparametric Frontier Models: a Probabilistic Approach , 2005 .

[3]  A. U.S.,et al.  FORMULATION AND ESTIMATION OF STOCHASTIC FRONTIER PRODUCTION FUNCTION MODELS , 2001 .

[4]  L. Simar,et al.  Nonparametric efficiency analysis: a multivariate conditional quantile approach , 2007 .

[5]  Tim Coelli,et al.  A Guide to Frontier version 4. 1: A Computer Program for Stochastic Frontier Production and Cost Fu , 1996 .

[6]  Dominique Deprins,et al.  Measuring Labor-Efficiency in Post Offices , 2006 .

[7]  L. Simar,et al.  Robust nonparametric estimators of monotone boundaries , 2005 .

[8]  Harold O. Fried,et al.  The Measurement of Productive Efficiency and Productivity Growth , 2008 .

[9]  John Ruggiero,et al.  A comparison of DEA and the stochastic frontier model using panel data , 2007, Int. Trans. Oper. Res..

[10]  P. Pestieau,et al.  Public Enterprise Economics.@@@The Performance of Public Enterprises: Concepts and Measurement. , 1987 .

[11]  S. Afriat Efficiency Estimation of Production Function , 1972 .

[12]  F. Hampel The Influence Curve and Its Role in Robust Estimation , 1974 .

[13]  C. Thomas-Agnan,et al.  NONPARAMETRIC FRONTIER ESTIMATION: A CONDITIONAL QUANTILE-BASED APPROACH , 2005, Econometric Theory.

[14]  W. Meeusen,et al.  Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error , 1977 .

[15]  I. Gijbels,et al.  Robustness and inference in nonparametric partial frontier modeling , 2011 .

[16]  Donald M. Waldman,et al.  A stationary point for the stochastic frontier likelihood , 1982 .

[17]  J. Florens,et al.  Nonparametric frontier estimation: a robust approach , 2002 .

[18]  Byeong-Ho Gong,et al.  Finite sample evidence on the performance of stochastic frontiers and data envelopment analysis using panel data , 1992 .

[19]  Rajiv D. Banker,et al.  Chapter 11 Simulation studies of efficiency, returns to scale and misspecification with nonlinear functions in DEA , 1996, Ann. Oper. Res..

[20]  S. Grosskopf Statistical inference and nonparametric efficiency: A selective survey , 1996 .

[21]  Abraham Charnes,et al.  Measuring the efficiency of decision making units , 1978 .

[22]  Andrea Resti,et al.  Efficiency measurement for multi-product industries: A comparison of classic and recent techniques based on simulated data , 2000, Eur. J. Oper. Res..

[23]  R. Banker,et al.  A Monte Carlo comparison of two production frontier estimation methods: Corrected ordinary least squares and data envelopment analysis , 1993 .

[24]  Steven B. Caudill,et al.  Small-sample properties of ML, COLS, and DEA estimators of frontier models in the presence of heteroscedasticity , 1998, Eur. J. Oper. Res..

[25]  Johannes Van Biesebroeck,et al.  Robustness of Productivity Estimates , 2007 .

[26]  D. Primont,et al.  Multi-Output Production and Duality: Theory and Applications , 1994 .

[27]  C. Lovell,et al.  On the estimation of technical inefficiency in the stochastic frontier production function model , 1982 .

[28]  A. Charnes,et al.  Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis , 1984 .

[29]  Henry Tulkens,et al.  On FDH efficiency analysis: Some methodological issues and applications to retail banking, courts, and urban transit , 1993 .

[30]  John Ruggiero,et al.  Efficiency measurement in the stochastic frontier model , 2001, Eur. J. Oper. Res..

[31]  S. Caudill,et al.  Biases in frontier estimation due to heteroscedasticity , 1993 .

[32]  Léopold Simar,et al.  Advanced Robust and Nonparametric Methods in Efficiency Analysis: Methodology and Applications , 2007 .

[33]  John Ruggiero,et al.  Efficiency estimation and error decomposition in the stochastic frontier model: A Monte Carlo analysis , 1999, Eur. J. Oper. Res..

[34]  Subal C. Kumbhakar,et al.  Stochastic frontier analysis , 2000 .

[35]  L. Simar,et al.  Conditional nonparametric frontier models for convex and nonconvex technologies: a unifying approach , 2007 .

[36]  Paul W. Wilson,et al.  FEAR: A software package for frontier efficiency analysis with R , 2008 .

[37]  David F. Hendry,et al.  Monte carlo experimentation in econometrics , 1984 .

[38]  C. Lovell,et al.  Stochastic Frontier Analysis: Frontmatter , 2000 .

[39]  D. S. Holland,et al.  Impacts of Random Noise and Specification on Estimates of Capacity Derived from Data Envelopment Analysis , 2001, Eur. J. Oper. Res..

[40]  William W. Cooper,et al.  A Simulation Study of Joint Uses of Data Envelopment Analysis and Statistical Regressions for Production Function Estimation and Efficiency Evaluation , 1998 .