Columbia University’s Baseline Detectors for 374 LSCOM Semantic Visual Concepts
暂无分享,去创建一个
[1] John R. Smith,et al. IBM Research TRECVID-2009 Video Retrieval System , 2009, TRECVID.
[2] Shih-Fu Chang,et al. Context-Based Concept Fusion with Boosted Conditional Random Fields , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.
[3] Dong Xu,et al. Columbia University TRECVID-2006 Video Search and High-Level Feature Extraction , 2006, TRECVID.
[4] Christian Petersohn. Fraunhofer HHI at TRECVID 2004: Shot Boundary Detection System , 2004, TRECVID.
[5] Shih-Fu Chang,et al. A reranking approach for context-based concept fusion in video indexing and retrieval , 2007, CIVR '07.
[6] John R. Smith,et al. Large-scale concept ontology for multimedia , 2006, IEEE MultiMedia.
[7] Paul Over,et al. TREC video retrieval evaluation TRECVID 2010 (slides) , 2009 .
[8] Marcel Worring,et al. The challenge problem for automated detection of 101 semantic concepts in multimedia , 2006, MM '06.
[9] Alexander G. Hauptmann,et al. LSCOM Lexicon Definitions and Annotations (Version 1.0) , 2006 .
[10] Winston H. Hsu,et al. Brief Descriptions of Visual Features for Baseline TRECVID Concept Detectors , 2006 .
[11] John Platt,et al. Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .
[12] John R. Smith,et al. Normalized classifier fusion for semantic visual concept detection , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).
[13] Dong Xu,et al. Visual Event Recognition in News Video using Kernel Methods with Multi-Level Temporal Alignment , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.