Fitting the curve in Excel®: Systematic curve fitting of laboratory and remotely sensed planetary spectra

Spectroscopy in planetary science often provides the only information regarding the compositional and mineralogical make up of planetary surfaces. The methods employed when curve fitting and modelling spectra can be confusing and difficult to visualize and comprehend. Researchers who are new to working with spectra may find inadequate help or documentation in the scientific literature or in the software packages available for curve fitting. This problem also extends to the parameterization of spectra and the dissemination of derived metrics. Often, when derived metrics are reported, such as band centres, the discussion of exactly how the metrics were derived, or if there was any systematic curve fitting performed, is not included. Herein we provide both recommendations and methods for curve fitting and explanations of the terms and methods used. Techniques to curve fit spectral data of various types are demonstrated using simple-to-understand mathematics and equations written to be used in Microsoft Excel software, free of macros, in a cut-and-paste fashion that allows one to curve fit spectra in a reasonably user-friendly manner. The procedures use empirical curve fitting, include visualizations, and ameliorates many of the unknowns one may encounter when using black-box commercial software. The provided framework is a comprehensive record of the curve fitting parameters used, the derived metrics, and is intended to be an example of a format for dissemination when curve fitting data. An introduction to empirical curve fitting UVvisNIR, and other spectra.An introduction to semi-automated methods for Gaussian Fitting.An introduction to common data analysis techniques used by reflectance spectroscopists.Curve fitting using Microsoft Excel.

[1]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[2]  Paul Mann,et al.  Chelyabinsk meteorite explains unusual spectral properties of Baptistina Asteroid Family , 2014, 1404.6666.

[3]  Janice L. Bishop,et al.  Decomposition of mineral absorption bands using nonlinear least squares curve fitting: Application to Martian meteorites and CRISM data , 2011 .

[4]  Paul A. Abell,et al.  Mineralogical composition of (25143) Itokawa 1998 SF36 from visible and near‐infrared reflectance spectroscopy: Evidence for partial melting , 2007 .

[5]  M. J. Gaffey,et al.  The Effects of Grain Size, <10 µm - 4.75 mm, on the Reflectance Spectrum of Planetary Analogs from 0.35-2.5 µm , 2008 .

[6]  Michael J. Gaffey,et al.  Spectral reflectance characteristics of the meteorite classes , 1976 .

[7]  Roger G. Burns,et al.  Mineralogical applications of crystal field theory , 1970 .

[8]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[9]  Paul G. Lucey,et al.  Spectral Properties of Water Ice and Contaminants , 1985 .

[10]  M. Darby Dyar,et al.  Spectroscopy of synthetic Mg‐Fe pyroxenes I: Spin‐allowed and spin‐forbidden crystal field bands in the visible and near‐infrared , 2007 .

[11]  R. Singer Near-infrared spectral reflectance of mineral mixtures - Systematic combinations of pyroxenes, olivine, and iron oxides , 1981 .

[12]  Carle M. Pieters,et al.  Moon: near-infrared spectral reflectance, a first good look. , 1981 .

[13]  Richard P. Binzel,et al.  MUSES‐C target asteroid (25143) 1998 SF36: A reddened ordinary chondrite , 2001 .

[14]  Jennifer L. Piatek,et al.  Mineralogical Variations within the S-Type Asteroid Class , 1993 .

[15]  George R. Rossman,et al.  CHAPTER 3. PYROXENE SPECTROSCOPY , 1980 .

[16]  Richard P. Binzel,et al.  Asteroid (101955) 1999 RQ36: Spectroscopy from 0.4 to 2.4μm and meteorite analogs , 2011 .

[17]  T. Farr,et al.  Effects of overlapping optical absorption bands of pyroxene and glass on the reflectance spectra of lunar soils. , 1980 .

[18]  R. N. Clark,et al.  A LARGE-SCALE INTERACTIVE ONE-DIMENSIONAL ARRAY PROCESSING SYSTEM , 1980 .

[19]  Benoit Rivard,et al.  Technical Note: Equivalence of modified Gaussian model (MGM) in wavenumber and Gaussian in wavelength for deconvolution of hyperspectral reflectance spectra , 2008 .

[20]  Richard P. Binzel,et al.  Lightcurve, Color and Phase Function Photometry of the OSIRIS-REx Target Asteroid (101955) Bennu , 2013 .

[21]  Harry Y. McSween,et al.  A coordinated spectral, mineralogical, and compositional study of ordinary chondrites , 2010 .

[22]  Michael J. Gaffey,et al.  Surface Lithologic Heterogeneity of Asteroid 4 Vesta , 1997 .

[23]  P. Christensen,et al.  Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration , 1997 .

[24]  Roger N. Clark,et al.  Water frost and ice - The near-infrared spectral reflectance 0.65-2.5 microns. [observed on natural satellites and other solar system objects , 1981 .

[25]  Carle M. Pieters,et al.  Determining the composition of olivine from reflectance spectroscopy , 1998 .

[26]  Richard P. Binzel,et al.  Pyroxene mineralogies of near‐Earth vestoids , 2009 .

[27]  J. Mustard,et al.  Quantifying absolute water content of minerals using near‐infrared reflectance spectroscopy , 2005 .

[28]  M. Gaffey The Asteroid (4) Vesta: Rotational Spectral Variations, Surface Material Heterogeneity, and Implications for the Origin of the Basaltic Achondrites , 1983 .

[29]  F. Meer Analysis of spectral absorption features in hyperspectral imagery , 2004 .

[30]  Michael J. Gaffey,et al.  Asteroid 6 Hebe: The probable parent body of the H‐type ordinary chondrites and the IIE iron meteorites , 1998 .

[31]  T V Johnson,et al.  Asteroid Vesta: Spectral Reflectivity and Compositional Implications , 1970, Science.

[32]  S. J. Sutley,et al.  Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems , 2003 .

[33]  M. Gaffey,et al.  Asteroid surface materials - Mineralogical characterizations and cosmological implications , 1977 .

[34]  Roger,et al.  Spectroscopy of Rocks and Minerals , and Principles of Spectroscopy , 2002 .

[35]  Michael Bruce Wyatt,et al.  Constraints on the composition and petrogenesis of the Martian crust , 2003 .

[36]  Carle M. Pieters,et al.  Mathematical Deconvolution of Mineral Absorption Bands , 1989 .

[37]  Patrick Pinet,et al.  A new systematic approach using the Modified Gaussian Model: Insight for the characterization of chemical composition of olivines, pyroxenes and olivine-pyroxene mixtures , 2011 .

[38]  Thomas G. Sharp,et al.  Effects of pure silica coatings on thermal emission spectra of basaltic rocks: Considerations for Martian surface mineralogy , 2003 .

[39]  Stuart Marsh,et al.  Mapping the wavelength position of deepest absorption features to explore mineral diversity in hyperspectral images , 2014 .

[40]  Wendell W. Mendell,et al.  Application of Kubelka-Munk theory of diffuse reflectance to geologic problems - The role of scattering , 1982 .

[41]  Mario Parente,et al.  Deconvolution of VNIR spectra using modified Gaussian modeling (MGM) with automatic parameter initialization (API) applied to CRISM , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[42]  M. Gaffey,et al.  Asteroid surface materials: Mineralogical characterizations from reflectance spectra , 1977 .

[43]  Carle M. Pieters,et al.  Deconvolution of mineral absorption bands: An improved approach , 1990 .

[44]  Akira Fujiwara,et al.  Near-Infrared Spectral Results of Asteroid Itokawa from the Hayabusa Spacecraft , 2006, Science.

[45]  M. Ramsey,et al.  Mineral abundance determination: Quantitative deconvolution of thermal emission spectra , 1998 .

[46]  Roger Nelson Clark,et al.  The Tetracorder user guide: version 4.4 , 2014 .

[47]  Junichiro Kawaguchi,et al.  Itokawa Dust Particles: A Direct Link Between S-Type Asteroids and Ordinary Chondrites , 2011, Science.

[48]  Michael J. Gaffey,et al.  Pyroxene spectroscopy revisited - Spectral-compositional correlations and relationship to geothermometry , 1991 .

[49]  Jessica M. Sunshine,et al.  GAUSSIAN ANALYSIS OF PYROXENE REFLECTANCE SPECTRA , 2009 .

[50]  Richard P. Binzel,et al.  Dawn; the Vesta–HED connection; and the geologic context for eucrites, diogenites, and howardites , 2013 .

[51]  M. Darby Dyar,et al.  Near‐infrared spectra of clinopyroxenes: Effects of calcium content and crystal structure , 2011 .

[52]  R. P. Binzel,et al.  Olivine-Pyroxene Distribution Of S-type Asteroids In The Main Belt , 2007 .

[53]  Michael J. Gaffey,et al.  Mineralogy of Asteroids , 2011 .

[54]  Michael J. Gaffey,et al.  Space weathering and the interpretation of asteroid reflectance spectra , 2010 .

[55]  Penelope L. King,et al.  Effect of halite coatings on thermal infrared spectra , 2015 .

[56]  Thomas H. Burbine,et al.  Mineralogies and source regions of near-Earth asteroids , 2013 .

[57]  Carle M. Pieters,et al.  Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model , 1993 .

[58]  David L. Bish,et al.  Reflectance Spectra Diversity of Silica-Rich Materials: Sensitivity to Environment and Implications for Detections on Mars , 2013 .

[59]  F.J.A. van Ruitenbeek,et al.  Processing OMEGA/Mars Express hyperspectral imagery from radiance-at-sensor to surface reflectance , 2014 .

[60]  Michael J. Gaffey,et al.  The Maria asteroid family: Genetic relationships and a plausible source of mesosiderites near the 3:1 Kirkwood Gap , 2011 .

[61]  Michael J. Gaffey,et al.  Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra , 1986 .