Activation energy for polypyrrole oxidation: film thickness influence

The oxidation rates of polypyrrole films at different temperatures fit Arrhenius plots, allowing the obtention of the activation energy for the reaction. The activation energy increases for rising thicknesses, up to 4 μm, of the polymer film and decreases for rising film thicknesses. Those values include the constant chemical activation energy and the energy required to relax the polymeric structure allowing the entrance of anions from the solution. The existence of a maximum on the polymeric relaxation energy points to a parallel change on the film molecular structure during the electropolymerization time. The variation of the diffusion coefficient per degree of temperature for the counterions, as a function of the film thickness, is similar to that obtained for the activation energy. Diffusion coefficients were obtained from the electrochemical stretched exponential describing a range of relaxation behaviors in disordered and non-equilibrium systems.

[1]  A. Ivaska,et al.  Kinetics of electron transfer between Fe(CN)63−/4− and poly(3,4-ethylenedioxythiophene) studied by electrochemical impedance spectroscopy , 2002 .

[2]  J. Bisquert,et al.  Impedance analysis of galvanostatically synthesized polypyrrole films. Correlation of ionic diffusion and capacitance parameters with the electrode morphology , 2002 .

[3]  Gerald Wilemski Simple Porous Electrode Models for Molten Carbonate Fuel Cells , 1983 .

[4]  F. Molina,et al.  Swelling and volume changes of polyaniline upon redox switching , 2004 .

[5]  R. N. Schindler,et al.  Investigation of conducting polymer electrodes by impedance spectroscopy during electropolymerization under galvanostatic conditions , 1997 .

[6]  M. Arenas,et al.  Synthesis and electrochemical evaluation of polypyrrole coatings electrodeposited onto AA-2024 alloy , 2008 .

[7]  T. F. Otero,et al.  Chronoamperometric study of conformational relaxation in PPy(DBS). , 2009, The journal of physical chemistry. B.

[8]  T. Otero,et al.  Polypyrrole oxidation: Kinetic coefficients, activation energy and conformational energy , 2009 .

[9]  M. I. Florit,et al.  Voltammetric study of the reduction and relaxation of poly(o-toluidine). Effect of the polymer thickness and the external electrolyte nature and concentration , 2000 .

[10]  Fumio Goto,et al.  Electrochemical studies of polyaniline and its application , 1987 .

[11]  A. Bassetto,et al.  Effect of thickness, chemical nature of dopants and an alkyl substituent on absorption bands of polyaniline , 1998 .

[12]  N. Mermilliod,et al.  Swelling of polyacetylene when doped by iodine or sodium , 1981 .

[13]  H. Grande,et al.  Intrinsic Asymmetry, Hysteresis, and Conformational Relaxation during Redox Switching in Polypyrrole: A Coulovoltametric Study , 1998 .

[14]  T. F. Otero,et al.  Role of Conformational Relaxation on the Voltammetric Behavior of Polypyrrole. Experiments and Mathematical Model , 1997 .

[15]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[16]  Toribio F. Otero,et al.  Soft, wet, and reactive polymers. Sensing artificial muscles and conformational energy , 2009 .

[17]  Leonardo G. Paterno,et al.  Effect of film thickness and different electrode geometries on the performance of chemical sensors made of nanostructured conducting polymer films , 2007 .

[18]  M. I. Florit,et al.  Volume Changes of Poly(2‐methylaniline) upon Redox Switching Anion and Relaxation Effects , 1999 .

[19]  G. Láng,et al.  On the electrochemical applications of the bending beam method , 2000 .

[20]  C. Plesse,et al.  Relaxation kinetics of poly(3,4-ethylenedioxythiophene) in 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)amide ionic liquid during potential step experiments , 2005 .

[21]  Toribio F. Otero,et al.  Parallel kinetic studies of the electrogeneration of conducting polymers: mixed materials, composition and properties control , 1994 .

[22]  V. Král,et al.  Optimization of the thickness of a conducting polymer, polyaniline, deposited on the surface of poly(vinyl chloride) membranes: a new way to improve their potentiometric response. , 2008, Analytica chimica acta.

[23]  J. Siegel,et al.  Application of the stretched exponential function to fluorescence lifetime imaging. , 2001, Biophysical journal.

[24]  Elisabeth Smela,et al.  Surprising Volume Change in PPy(DBS): An Atomic Force Microscopy Study , 1999 .

[25]  Gordon G Wallace,et al.  Visualizing dynamic actuation of ultrathin polypyrrole films. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[26]  Katsuaki Okabayashi,et al.  In Situ Electrogravimetric Analysis of Polypyrrole and Polyaniline Positive Electrodes in Nonaqueous Medium , 1989 .

[27]  T. F. Otero,et al.  Conformational movements explain logarithmic relaxation in conducting polymers , 1999 .

[28]  Q. Pei,et al.  Electrochemical applications of the bending beam method. 1. Mass transport and volume changes in polypyrrole during redox , 1992 .

[29]  E. Brillas,et al.  Electrogeneration of poly(2,5-di-(2-thienyl)-pyrrole) in acetonirile. Kinetics, productivity and composition of the oxidized form , 1996 .

[30]  I. A. Hümmelgen,et al.  Influence of film thickness on charge transport of electrodeposited polypyrrole thin films , 2002 .

[31]  T. Otero,et al.  Poly(3-methylthiophene) oxidation under chemical control. Rate coefficients change with prepolarization potentials of reduction , 2007 .

[32]  T. F. Otero,et al.  Revisiting the Electrochemical and Polymeric Behavior of a Polypyrrole Free-Standing Electrode in Aqueous Solution , 2003 .

[33]  R. L. Elsenbaumer,et al.  Handbook of conducting polymers , 1986 .

[34]  Toribio F. Otero,et al.  Polypyrrole: Diffusion Coefficients and Degradation by Overoxidation , 2004 .

[35]  Elisabeth Smela,et al.  The effect of pH on polymerization and volume change in PPy(DBS) , 1998 .

[36]  Toribio F. Otero,et al.  Reinterpretation of Polypyrrole Electrochemistry after Consideration of Conformational Relaxation Processes , 1997 .

[37]  F. Santos,et al.  Polythiophene oxidation: Rate coefficients, activation energy and conformational energies , 2008 .

[38]  J. Kennedy,et al.  Structural biological materials , 2001 .

[39]  Qibing Pei,et al.  Electrochemical applications of the bending beam method. 2. Electroshrinking and slow relaxation in polypyrrole , 1993 .

[40]  M. Shlesinger,et al.  Anomalous diffusion producing normal relaxation and transport , 2007 .

[41]  K. Shiu,et al.  Effects of polymer thickness on the potentiometric pH responses of polypyrrole modified glassy carbon electrodes , 1999 .

[42]  S. Trasatti,et al.  Pyrrole-based silane primer for corrosion protection of commercial Al alloys: Part I: Synthesis and spectroscopic characterization , 2009 .

[43]  Jean-Luc Brédas,et al.  Conjugated polymeric materials : opportunities in electronics, optoelectronics and molecular electronics , 1990 .

[44]  T. F. Otero,et al.  Thermally enhanced conformational relaxation during electrochemical oxidation of polypyrrole , 1996 .

[45]  T. F. Otero,et al.  Synthesis, electropolymerization and oxidation kinetics of an anthraquinone-functionalized poly(3,4-ethylenedioxythiophene) , 2010 .

[46]  Chi-Chang Hu,et al.  Electrochemical impedance characterization of polyaniline-coated graphite electrodes for electrochemical capacitors — effects of film coverage/thickness and anions , 2001 .

[47]  R. Murray,et al.  An Ion Gate Membrane: Electrochemical Control of Ion Permeability through a Membrane with an Embedded Electrode , 1982 .

[48]  Y. Harima,et al.  Light reflection at polyaniline films and its application to a kinetic study of polymer chain conformation , 2007 .

[49]  H. Nalwa Handbook of organic conductive molecules and polymers , 1997 .

[50]  Nikolaj Gadegaard,et al.  Volume Change in Polypyrrole Studied by Atomic Force Microscopy , 2001 .

[51]  N. F. Atta,et al.  Electrodeposited metals at conducting polymer electrodes: I—Effect of particle size and film thickness on electrochemical response , 2007 .

[52]  Toribio F. Otero,et al.  Ionic diffusion across oxidized polypyrrole membranes and during oxidation of the free-standing film , 2005 .

[53]  V. Truong Thermal degradation of polypyrrole : effect of temperature and film thickness , 1992 .

[54]  C. B. Bufon,et al.  Piezoresistance in chemically synthesized polypyrrole thin films , 2009, 0908.3840.

[55]  Yoshihito Osada,et al.  Polymer sensors and actuators , 2000 .

[56]  K. Potje-Kamloth,et al.  The influence of thickness and preparation temperature of doped polypyrrole films on the electrical and chemical sensing properties of polypyrrole/gold Schottky barrier diodes , 2000 .

[57]  J. Tanguy,et al.  Electrogravimetrical study of polypyrrole , 1989 .

[58]  J. Reynolds,et al.  Influence of the film thickness and morphology on the colorimetric properties of spray-coated electrochromic disubstituted 3,4-propylenedioxythiophene polymers. , 2009, ACS applied materials & interfaces.

[59]  E. Castner,et al.  Fluorescence probing of temperature-dependent dynamics and friction in ionic liquid local environments. , 2007, The journal of physical chemistry. B.

[60]  T. Otero,et al.  Potentiostatic oxidation of poly(3-methylthiophene): Influence of the prepolarization time at cathodic potentials on the kinetics , 2008 .

[61]  R. Murray,et al.  Ion gate electrodes. Polypyrrole as a switchable ion conductor membrane , 1984 .

[62]  C. Santamaría,et al.  Polypyrrole electrogeneration at different potentials: “Ex situ” microgravimetric control , 1991 .

[63]  M. Márquez,et al.  Diffusion coefficients in swelling polypyrrole: ESCR and Cottrell models. , 2005, The journal of physical chemistry. B.

[64]  Toribio F. Otero,et al.  Conformational relaxation in conducting polymers: effect of polymer–solvent interactions , 1998 .

[65]  S. Trasatti,et al.  Pyrrole-based silane primer for corrosion protection of commercial Al alloys. Part II. Corrosion performance in neutral NaCl solution , 2009 .

[66]  S. Pitchumani,et al.  The effect of film thickness and counter ions on the double layer and redox capacitance of polyaniline thin film electrode , 2002 .

[67]  W. R. Salaneck,et al.  Intrinsically conducting polymers : an emerging technology , 1993 .

[68]  D. De Rossi,et al.  Chemoresistive conducting polymer-based odour sensors: influence of thickness changes on their sensing properties , 1997 .

[69]  M. Ayad,et al.  Film thickness studies for the chemically synthesized conducting polyaniline , 2003 .

[70]  Toribio F. Otero,et al.  Comparative Study of Conducting Polymers by the ESCR Model , 2003 .

[71]  M. Lonergan,et al.  Ion transport in polyacetylene ionomers , 2008 .

[72]  Rüdiger Kötz,et al.  Nanoscale Dimensional Changes and Optical Properties of Polyaniline Measured by In Situ Spectroscopic Ellipsometry , 1994 .

[73]  O. Inganäs,et al.  Doping-induced volume changes in poly(3-octylthiophene) solids and gels , 1995 .