Designs of Bhattacharyya Parameter in the Construction of Polar Codes

Polar codes, introduced by Arikan recently, can achieve capacity of symmetric channel with low complexity successive cancellation decoding strategy. In this paper, we design efficient Bhattacharyya Parameters in Polar codes construction for common communications channels. We present the satisfactory recursive formula for the four conventional channels and discuss the initial value of each recursive equations. Numerical simulations show that Polar codes are channel-specific designing codes; they can approach their capacities by selecting the frozen bits in our proposed Bhattacharyya Parameter calculating method.

[1]  Rüdiger L. Urbanke,et al.  Polar Codes: Characterization of Exponent, Bounds, and Constructions , 2010, IEEE Transactions on Information Theory.

[2]  Alexander Vardy,et al.  Achieving the secrecy capacity of wiretap channels using Polar codes , 2010, ISIT.

[3]  Rüdiger L. Urbanke,et al.  Polar Codes for Channel and Source Coding , 2009, ArXiv.

[4]  Emre Telatar,et al.  Polar codes for q-ary source coding , 2010, 2010 IEEE International Symposium on Information Theory.

[5]  Mikael Skoglund,et al.  Nested Polar Codes for Wiretap and Relay Channels , 2010, IEEE Communications Letters.

[6]  E. Arkan,et al.  A performance comparison of polar codes and Reed-Muller codes , 2008, IEEE Communications Letters.

[7]  Toshiyuki Tanaka,et al.  Performance of polar codes with the construction using density evolution , 2009, IEEE Communications Letters.

[8]  Ryuhei Mori,et al.  Performance and construction of polar codes on symmetric binary-input memoryless channels , 2009, 2009 IEEE International Symposium on Information Theory.

[9]  Rüdiger L. Urbanke,et al.  Polar Codes for Channel and Source Coding , 2009, ArXiv.

[10]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[11]  Rüdiger L. Urbanke,et al.  Polar Codes are Optimal for Lossy Source Coding , 2009, IEEE Transactions on Information Theory.

[12]  Emre Telatar,et al.  MAC polar codes and matroids , 2010, 2010 Information Theory and Applications Workshop (ITA).

[13]  Toshiyuki Tanaka,et al.  Non-binary polar codes using Reed-Solomon codes and algebraic geometry codes , 2010, 2010 IEEE Information Theory Workshop.