Optimal transport maps on Alexandrov spaces revisited

We give an alternative proof for the fact that in n-dimensional Alexandrov spaces with curvature bounded below there exists a unique optimal transport plan from any purely $$(n-1)$$ ( n - 1 ) -unrectifiable starting measure, and that this plan is induced by an optimal map. Our proof does not rely on the full optimality of a given plan but rather on the c-monotonicity, thus we obtain the existence of transport maps for wider class of (possibly non-optimal) transport plans.

[1]  Thierry Champion,et al.  ON THE TWIST CONDITION AND c -MONOTONE TRANSPORT PLANS , 2012 .

[2]  S. Lisini,et al.  Characterization of absolutely continuous curves in Wasserstein spaces , 2006 .

[3]  L. Ambrosio,et al.  Riemannian Ricci curvature lower bounds in metric measure spaces with -finite measure , 2012, 1207.4924.

[4]  L. Ambrosio,et al.  Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces , 2015, Memoirs of the American Mathematical Society.

[5]  Heikki Jylhä The $$L^\infty $$L∞ optimal transport: infinite cyclical monotonicity and the existence of optimal transport maps , 2015 .

[6]  Nicola Gigli,et al.  On the inverse implication of Brenier-Mccann theorems and the structure of (P 2 (M),W 2 ) , 2011 .

[7]  Eduardo H. Zarantonello,et al.  Dense single-valuedness of monotone operators , 1973 .

[8]  L. Kantorovich On the Translocation of Masses , 2006 .

[9]  Karl-Theodor Sturm,et al.  Non-branching geodesics and optimal maps in strong C D ( K , ∞ ) -spaces , 2013 .

[10]  Martin Kell Transport maps, non-branching sets of geodesics and measure rigidity , 2017, 1704.05422.

[11]  A. Mondino,et al.  Optimal maps in essentially non-branching spaces , 2016, 1609.00782.

[12]  A. Pratelli,et al.  On the sufficiency of c-cyclical monotonicity for optimality of transport plans , 2008 .

[13]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[14]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[15]  Nicola Gigli,et al.  Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below , 2011, 1106.2090.

[16]  Y. Otsu,et al.  The Riemannian structure of Alexandrov spaces , 1994 .

[17]  L. Pascale,et al.  The Monge problem in ${\mathbb R}^d$ , 2011 .

[18]  Slopes of Kantorovich potentials and existence of optimal transport maps in metric measure spaces , 2011, 1111.5119.

[19]  T. Schultz Existence of optimal transport maps in very strict $CD(K,\infty)$ -spaces , 2017 .

[20]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces. II , 2006 .

[21]  Nicola Gigli OPTIMAL MAPS IN NON BRANCHING SPACES WITH RICCI CURVATURE BOUNDED FROM BELOW , 2012 .

[22]  Karl-Theodor Sturm,et al.  On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces , 2013, 1303.4382.

[23]  Existence and uniqueness of optimal transport maps , 2013, 1301.1782.

[24]  M. Knott,et al.  Note on the optimal transportation of distributions , 1987 .

[25]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[26]  Luděk Zajíček,et al.  On the differentiation of convex functions in finite and infinite dimensional spaces , 1979 .

[27]  K. Shiohama An Introduction to the geometry of Alexandrov spaces , 1993 .

[28]  A. Mondino,et al.  On quotients of spaces with Ricci curvature bounded below , 2017, Journal of Functional Analysis.

[29]  Karl-Theodor Sturm,et al.  Non-branching geodesics and optimal maps in strong $$CD(K,\infty )$$CD(K,∞)-spaces , 2012, 1207.6754.

[30]  S. Bianchini,et al.  The Monge Problem for Distance Cost in Geodesic Spaces , 2011, 1103.2796.

[31]  Thierry Champion,et al.  The ∞-Wasserstein Distance: Local Solutions and Existence of Optimal Transport Maps , 2008, SIAM J. Math. Anal..

[32]  Anton Petrunin,et al.  Alexandrov meets Lott-Villani-Sturm , 2010, 1003.5948.

[33]  Gershon Wolansky,et al.  Optimal Transport , 2021 .

[34]  T. Schultz Existence of optimal transport maps in very strict $$CD(K,\infty )$$CD(K,∞) -spaces , 2017, Calculus of Variations and Partial Differential Equations.

[35]  Séverine Rigot,et al.  Monge's transport problem in the Heisenberg group , 2010, 1001.4012.

[36]  Karl-Theodor Sturm,et al.  Optimal Maps and Exponentiation on Finite-Dimensional Spaces with Ricci Curvature Bounded from Below , 2013, 1305.4849.

[37]  T. Rajala,et al.  Failure of Topological Rigidity Results for the Measure Contraction Property , 2014, Potential Analysis.

[38]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[39]  A. Kechris Classical descriptive set theory , 1987 .

[40]  Shin-ichi Ohta On the measure contraction property of metric measure spaces , 2007 .

[41]  Existence and uniqueness of optimal maps on Alexandrov spaces , 2007, 0705.0437.

[42]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[43]  L. Ambrosio,et al.  Metric measure spaces with Riemannian Ricci curvature bounded from below , 2011, 1109.0222.

[44]  R. McCann Polar factorization of maps on Riemannian manifolds , 2001 .