Computer Vision – ECCV 2014

Re-identification of individuals across camera networks with limited or no overlapping fields of view remains challenging in spite of significant research efforts. In this paper, we propose the use, and extensively evaluate the performance, of four alternatives for re-ID classification: regularized Pairwise Constrained Component Analysis, kernel Local Fisher Discriminant Analysis, Marginal Fisher Analysis and a ranking ensemble voting scheme, used in conjunction with different sizes of sets of histogram-based features and linear, χ and RBF-χ kernels. Comparisons against the state-of-art show significant improvements in performance measured both in terms of Cumulative Match Characteristic curves (CMC) and Proportion of Uncertainty Removed (PUR) scores on the challenging VIPeR, iLIDS, CAVIAR and 3DPeS datasets.

[1]  Frédo Durand,et al.  Edge-preserving multiscale image decomposition based on local extrema , 2009, ACM Trans. Graph..

[2]  Zeev Farbman,et al.  Edge-preserving decompositions for multi-scale tone and detail manipulation , 2008, SIGGRAPH 2008.

[3]  Shih-Fu Chang,et al.  Semi-supervised hashing for scalable image retrieval , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[5]  Stephen Lin,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Mark S. Drew,et al.  Recovering Shading from Color Images , 1992, ECCV.

[7]  Fatih Murat Porikli,et al.  Region Covariance: A Fast Descriptor for Detection and Classification , 2006, ECCV.

[8]  Stephen Lin,et al.  A Closed-Form Solution to Retinex with Nonlocal Texture Constraints , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[10]  Nick Barnes,et al.  Learning Structured Hough Voting for Joint Object Detection and Occlusion Reasoning , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Aykut Erdem,et al.  Structure-preserving image smoothing via region covariances , 2013, ACM Trans. Graph..

[12]  Andrew W. Fitzgibbon,et al.  Efficient Object Category Recognition Using Classemes , 2010, ECCV.

[13]  Svetlana Lazebnik,et al.  Scene recognition and weakly supervised object localization with deformable part-based models , 2011, 2011 International Conference on Computer Vision.

[14]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[15]  Tieniu Tan,et al.  Silhouette Analysis-Based Gait Recognition for Human Identification , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  H. Barrow,et al.  RECOVERING INTRINSIC SCENE CHARACTERISTICS FROM IMAGES , 1978 .

[17]  Alexei A. Efros,et al.  Unsupervised Discovery of Mid-Level Discriminative Patches , 2012, ECCV.

[18]  Jitendra Malik,et al.  Recovering photometric properties of architectural scenes from photographs , 1998, SIGGRAPH.

[19]  Yair Weiss,et al.  Deriving intrinsic images from image sequences , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[20]  Vittorio Murino,et al.  Symmetry-driven accumulation of local features for human characterization and re-identification , 2013, Comput. Vis. Image Underst..

[21]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[22]  Andrew Zisserman,et al.  Fisher Vector Faces in the Wild , 2013, BMVC.

[23]  Erik Reinhard,et al.  Image-based material editing , 2005, SIGGRAPH '05.

[24]  Pinar Duygulu Sahin,et al.  Interesting faces: A graph-based approach for finding people in news , 2010, Pattern Recognit..

[25]  Chuohao Yeo,et al.  Intrinsic images decomposition using a local and global sparse representation of reflectance , 2011, CVPR 2011.

[26]  Mei Han,et al.  Shadow removal for aerial imagery by information theoretic intrinsic image analysis , 2012, 2012 IEEE International Conference on Computational Photography (ICCP).

[27]  Yannis Avrithis,et al.  To Aggregate or Not to aggregate: Selective Match Kernels for Image Search , 2013, 2013 IEEE International Conference on Computer Vision.

[28]  Xiaogang Wang,et al.  Person Re-identification by Salience Matching , 2013, 2013 IEEE International Conference on Computer Vision.

[29]  Antonio Criminisi,et al.  Harvesting Image Databases from the Web , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[30]  Pinar Duygulu Sahin,et al.  A Graph Based Approach for Naming Faces in News Photos , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[31]  Dani Lischinski,et al.  A Closed-Form Solution to Natural Image Matting , 2008 .

[32]  Peter H. Tu,et al.  Appearance-based person reidentification in camera networks: problem overview and current approaches , 2011, J. Ambient Intell. Humaniz. Comput..

[33]  Ali Farhadi,et al.  Attribute Discovery via Predictable Discriminative Binary Codes , 2012, ECCV.

[34]  Michael J. Black,et al.  A Naturalistic Open Source Movie for Optical Flow Evaluation , 2012, ECCV.

[35]  James M. Rehg,et al.  CENTRIST: A Visual Descriptor for Scene Categorization , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Stephen Lin,et al.  Estimating Intrinsic Images from Image Sequences with Biased Illumination , 2004, ECCV.

[37]  Erik De Schutter,et al.  Novelty detection in a Kohonen-like network with a long-term depression learning rule , 2003, Neurocomputing.

[38]  Adrien Bousseau,et al.  Coherent intrinsic images from photo collections , 2012, ACM Trans. Graph..

[39]  Shaogang Gong,et al.  Reidentification by Relative Distance Comparison , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Li Xu,et al.  Structure extraction from texture via relative total variation , 2012, ACM Trans. Graph..

[41]  Antonio Torralba,et al.  Recognizing indoor scenes , 2009, CVPR.

[42]  Michael Elad,et al.  A Variational Framework for Retinex , 2002, IS&T/SPIE Electronic Imaging.

[43]  Fei-Fei Li,et al.  Attribute Learning in Large-Scale Datasets , 2010, ECCV Workshops.

[44]  Stephen Lin,et al.  Estimation of Intrinsic Image Sequences from Image+Depth Video , 2012, ECCV.

[45]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[46]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[47]  Rita Cucchiara,et al.  People reidentification in surveillance and forensics , 2013, ACM Comput. Surv..

[48]  Keiji Yanai,et al.  Probabilistic web image gathering , 2005, MIR '05.

[49]  Cewu Lu,et al.  Image smoothing via L0 gradient minimization , 2011, ACM Trans. Graph..

[50]  Tong Zhang,et al.  Text Categorization Based on Regularized Linear Classification Methods , 2001, Information Retrieval.

[51]  Ernest Valveny,et al.  Leveraging category-level labels for instance-level image retrieval , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[52]  Robert P. W. Duin,et al.  Novelty Detection Using Self-Organizing Maps , 1997, ICONIP.

[53]  Jitendra Malik,et al.  Intrinsic Scene Properties from a Single RGB-D Image , 2013, CVPR.

[54]  Derek Hoiem,et al.  Indoor Segmentation and Support Inference from RGBD Images , 2012, ECCV.

[55]  Cordelia Schmid,et al.  Learning Color Names for Real-World Applications , 2009, IEEE Transactions on Image Processing.

[56]  Vladlen Koltun,et al.  A Simple Model for Intrinsic Image Decomposition with Depth Cues , 2013, 2013 IEEE International Conference on Computer Vision.

[57]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[58]  Adrien Bousseau,et al.  Rich Intrinsic Image Decomposition of Outdoor Scenes from Multiple Views , 2013, IEEE Trans. Vis. Comput. Graph..