Real‐time interactive MRI on a conventional scanner

A real‐time interactive MRI system capable of localizing coronary arteries and imaging arrhythmic hearts in real‐time is described. Non‐2DFT acquisition strategies such as spiral‐interleaf, spiral‐ring, and circular echo‐planar imaging provide short scan times on a conventional scanner. Real‐time grid‐ding reconstruction at 8–20 image is achieved by distributing the reconstruction on general‐purpose UNIX workstations. An X‐windows application provides interactive control. A six‐interleaf spiral sequence is used for cardiac imaging and can acquire six images/s. A sliding window reconstruction achieves display rates of 16–20 images/s. This allows cardiac images to be acquired in real‐time, with minimal motion and flow artifacts, and without breath holding or cardiac gating. Abdominal images are acquired at over 2.5 images/s with spiral‐ring or circular echo‐planar sequences. Reconstruction rates are 8–10 images/s. Rapid localization in the abdomen is demonstrated with the spiral‐ring acquisition, whereas peristaltic motion in the small bowel is well visualized using the circular echo‐planar sequence.

[1]  D M Spielman,et al.  Spiral imaging on a small‐bore system at 4.7t , 1995, Magnetic resonance in medicine.

[2]  D G Nishimura,et al.  A Velocity k‐Space Analysis of Flow Effects in Echo‐Planar and Spiral Imaging , 1995, Magnetic resonance in medicine.

[3]  X Hu,et al.  Continuous Update with Random Encoding (CURE): A New Strategy for Dynamic Imaging , 1995, Magnetic resonance in medicine.

[4]  A A Moss,et al.  Dilute oral iron solutions as gastrointestinal contrast agents for magnetic resonance imaging; initial clinical experience. , 1985, Magnetic resonance imaging.

[5]  P. Mansfield Multi-planar image formation using NMR spin echoes , 1977 .

[6]  D G Nishimura,et al.  Inhomogeneity correction using an estimated linear field map , 1996, Magnetic resonance in medicine.

[7]  A. Haase,et al.  Rapid NMR Imaging Using Low Flip-Angle Pulses , 2004 .

[8]  Volker Rasche,et al.  Continuous radial data acquisition for dynamic MRI , 1995, Magnetic resonance in medicine.

[9]  A. Macovski,et al.  Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. , 1991, IEEE transactions on medical imaging.

[10]  E R McVeigh,et al.  The effect of high performance gradients on fast gradient echo imaging , 1994, Magnetic resonance in medicine.

[11]  A. Haase,et al.  Snapshot flash mri. applications to t1, t2, and chemical‐shift imaging , 1990, Magnetic resonance in medicine.

[12]  William E. Glenn,et al.  The Design Of Systems That Display Moving Images Based On Spatio-Temporal Vision Data , 1988, Photonics West - Lasers and Applications in Science and Engineering.

[13]  F. Jolesz,et al.  Dynamically adaptive MRI with encoding by singular value decomposition , 1994, Magnetic resonance in medicine.

[14]  Douglas C. Noll,et al.  Deblurring for non‐2D fourier transform magnetic resonance imaging , 1992, Magnetic resonance in medicine.

[15]  F. Jolesz,et al.  Tissue temperature monitoring for thermal interventional therapy: Comparison of T1‐weighted MR sequences , 1994, Journal of magnetic resonance imaging : JMRI.

[16]  Kullervo Hynynen,et al.  MR temperature mapping of focused ultrasound surgery , 1994, Magnetic resonance in medicine.

[17]  F. Jolesz,et al.  Interactive MR-guided biopsy in an open-configuration MR imaging system. , 1995, Radiology.

[18]  F A Jolesz,et al.  Focused US system for MR imaging-guided tumor ablation. , 1995, Radiology.

[19]  D M Spielman,et al.  Magnetic resonance fluoroscopy using spirals with variable sampling densities , 1995, Magnetic resonance in medicine.

[20]  A F Gmitro,et al.  A real‐time reconstruction system for magnetic resonance imaging , 1996, Magnetic resonance in medicine.

[21]  S Saini,et al.  Forty-millisecond MR imaging of the abdomen at 2.0 T. , 1989, Radiology.

[22]  Tomoyuki Haishi,et al.  Real-Time NMR Imaging Systems Using Personal Computers , 1997 .

[23]  S J Riederer,et al.  Real‐time MR fluoroscopic data acquisition and image reconstruction , 1989, Magnetic resonance in medicine.

[24]  J. J. van Vaals,et al.  “Keyhole” method for accelerating imaging of contrast agent uptake , 1993, Journal of magnetic resonance imaging : JMRI.

[25]  J. Pauly,et al.  A homogeneity correction method for magnetic resonance imaging with time-varying gradients. , 1991, IEEE transactions on medical imaging.

[26]  L P Panych,et al.  Implementation of wavelet‐encoded MR imaging , 1993, Journal of magnetic resonance imaging : JMRI.

[27]  R. Kikinis,et al.  Superconducting open-configuration MR imaging system for image-guided therapy. , 1995, Radiology.

[28]  O. Haraldseth,et al.  K‐space substitution: A novel dynamic imaging technique , 1993, Magnetic resonance in medicine.

[29]  R J Herfkens,et al.  Two-second MR images: comparison with spin-echo images in 29 patients. , 1987, AJR. American journal of roentgenology.

[30]  P. Mucha,et al.  Small intestinal obstruction. , 1987, The Surgical clinics of North America.

[31]  E. McVeigh,et al.  Cardiac Tagging with Breath‐Hold Cine MRI , 1992, Magnetic resonance in medicine.

[32]  L P Panych,et al.  A dynamically adaptive imaging algorithm for wavelet‐encoded MRI , 1994, Magnetic resonance in medicine.

[33]  R C Grimm,et al.  Real‐time interactive magnetic resonance imaging , 1990, Magnetic resonance in medicine.

[34]  T. Berne,et al.  Roentgenographic contrast studies in acute small-bowel obstruction. , 1984, Archives of surgery.

[35]  J. Pauly,et al.  Simultaneous spatial and spectral selective excitation , 1990, Magnetic resonance in medicine.

[36]  C J Hardy,et al.  Real‐time acquisition, display, and interactive graphic control of NMR cardiac profiles and images , 1993, Magnetic resonance in medicine.

[37]  Bob S. Hu,et al.  Fast Spiral Coronary Artery Imaging , 1992, Magnetic resonance in medicine.

[38]  J N Lee,et al.  MR fluoroscopy: Technical feasibility , 1988, Magnetic resonance in medicine.