Existence of solutions for Kirchhoff type problems with critical nonlinearity in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begi

AbstractIn this paper, we consider the existence and multiplicity of standing wave solutions of Kirchhoff type problems with critical nonlinearity in $${\mathbb{R}^N}$$RN : $$-\varepsilon^p \left(a + b \int\limits_{\mathbb{R}^N} \frac{1}{p}|\nabla u|^p{\rm d}x \right) \,{\rm div}(|\nabla u|^{p-2}\nabla u) + V(x)|u|^{p-2}u = K(x)|u|^{p^\ast-2}u + h(x,u),$$-εpa+b∫RN1p|∇u|pdxdiv(|∇u|p-2∇u)+V(x)|u|p-2u=K(x)|u|p*-2u+h(x,u), for all $${(t, x) \in \mathbb{R} \times \mathbb{R}^N}$$(t,x)∈R×RN, where V(x) is a nonnegative potential, and K(x) is a bounded positive function. Under suitable assumptions, we show that this equation has at least one solution provided that $${\varepsilon < \mathcal {E}}$$ε<E, for any $${m \in \mathbb{N}}$$m∈N, it has m pairs of solutions if $${\varepsilon < \mathcal {E}_m}$$ε<Em, where $${\mathcal {E}}$$E and $${\mathcal {E}_m}$$Em are sufficiently small positive numbers. Moreover, these solutions $${u_\varepsilon \rightarrow 0}$$uε→0 in $${W^{1,p}(\mathbb{R}^N)}$$W1,p(RN) as $${\varepsilon \rightarrow 0}$$ε→0.

[1]  A. Ambrosetti,et al.  Nonlinear Schrödinger equations with vanishing and decaying potentials , 2005, Differential and Integral Equations.

[2]  Jaeyoung Byeon,et al.  Standing Waves with a Critical Frequency for Nonlinear Schrödinger Equations , 2002 .

[3]  A. Ambrosetti,et al.  Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity , 2005 .

[4]  G. Lu,et al.  INFINITY LAPLACE EQUATION WITH NON-TRIVIAL RIGHT-HAND SIDE , 2010 .

[5]  M. Pino,et al.  Semi-classical States for Nonlinear Schrödinger Equations , 1997 .

[6]  Nikolaos S. Papageorgiou,et al.  Nontrivial solutions for a class of resonant p-Laplacian Neumann problems , 2009 .

[7]  D. Cao,et al.  Semi-Classical Bound States for Schrödinger Equations with Potentials Vanishing or Unbounded at Infinity , 2009 .

[8]  Jaime E. Muñoz Rivera,et al.  Positive solutions for a nonlinear nonlocal elliptic transmission problem , 2003, Appl. Math. Lett..

[9]  Xiaoming He,et al.  Infinitely many positive solutions for Kirchhoff-type problems , 2009 .

[10]  Xiaoming He,et al.  Multiplicity of solutions for a class of Kirchhoff type problems , 2010 .

[11]  Xiaoming He,et al.  Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3 , 2012 .

[12]  Juncheng Wei,et al.  Semiclassical states for nonlinear Schrödinger equations with sign-changing potentials , 2007 .

[13]  Antonio Ambrosetti,et al.  Perturbation Methods and Semilinear Elliptic Problems on R^n , 2005 .

[14]  Alan Weinstein,et al.  Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential , 1986 .

[15]  Yanheng Ding,et al.  Minimal nodal solutions of a Schrödinger equation with critical nonlinearity and symmetric potential , 2003, Differential and Integral Equations.

[16]  S. Cingolani,et al.  Multiple Positive Solutions to Nonlinear Schrödinger Equations with Competing Potential Functions , 2000 .

[17]  Zhi-Qiang Wang,et al.  Standing waves with a critical frequency for nonlinear Schrödinger equations, II , 2003 .

[18]  V. Benci On critical point theory for indefinite functionals in the presence of symmetries , 1982 .

[19]  P. Rabinowitz Minimax methods in critical point theory with applications to differential equations , 1986 .

[20]  Paul H. Rabinowitz,et al.  On a class of nonlinear Schrödinger equations , 1992 .

[21]  Kanishka Perera,et al.  Nontrivial solutions of Kirchhoff-type problems via the Yang index , 2006 .

[22]  Henghui Zou EXISTENCE AND NON-EXISTENCE FOR SCHRÖDINGER EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS , 2010 .

[23]  F. Lin,et al.  Solutions of perturbed Schrödinger equations with critical nonlinearity , 2007 .

[24]  M. Pino,et al.  Multi-peak bound states for nonlinear Schrödinger equations , 1998 .

[25]  Giuseppina Autuori,et al.  Global Nonexistence for Nonlinear Kirchhoff Systems , 2010 .

[26]  Y. Oh On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential , 1990 .

[27]  Elliott H. Lieb,et al.  A Relation Between Pointwise Convergence of Functions and Convergence of Functionals , 1983 .

[28]  Jiabao Su,et al.  Nonlinear schrodinger equations with unbounded and decaying radial potentials , 2007 .

[29]  O. Yong-Geun Correction to existence of semiclassical bound states of nonlinear scierodinger equations with potentials of the, class (V)a , 1989 .

[30]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[31]  Jean Van Schaftingen,et al.  Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials , 2009, 0902.0722.

[32]  Xuefeng Wang On concentration of positive bound states of nonlinear Schrödinger equations , 1993 .

[33]  Francisco Júlio S. A. Corrêa,et al.  On a nonlocal elliptic system of p-Kirchhoff-type under Neumann boundary condition , 2009, Math. Comput. Model..

[34]  D. Smets A concentration-compactness lemma with applications to singular eigenvalue problems , 1999 .

[35]  Existence and non existence of the ground state solution for the nonlinear Schroedinger equations with $V(\infty)=0$ , 2005 .

[36]  Giuseppina Autuori,et al.  On the existence of stationary solutions for higher-order p-Kirchhoff problems , 2014 .

[37]  Xian Wu,et al.  Existence of nontrivial solutions and high energy solutions for Schrödinger–Kirchhoff-type equations in RN☆ , 2011 .

[38]  P. Lions,et al.  Stationary solutions of nonlinear Schr?odinger equations with an external magnetic field , 1989 .

[39]  S. Solimini,et al.  Infinitely many bound states for some nonlinear scalar field equations , 2005 .

[40]  Huan-Song Zhou,et al.  Asymptotically linear Schrödinger equation with potential vanishing at infinity , 2008 .

[41]  Jiabao Su,et al.  Weighted Sobolev embedding with unbounded and decaying radial potentials , 2007 .

[42]  Giovany M. Figueiredo,et al.  On an elliptic equation of p-Kirchhoff type via variational methods , 2006, Bulletin of the Australian Mathematical Society.

[43]  Y. Oh Existence of Semiclassical Bound States of Nonlinear Schrödinger Equations with Potentials of the Class (V)a , 1988 .

[44]  Patrizia Pucci,et al.  Multiplicity of solutions for p ( x ) -polyharmonic elliptic Kirchhoff equations , 2011 .

[45]  M. Pino,et al.  Local mountain passes for semilinear elliptic problems in unbounded domains , 1996 .

[46]  Yuehua Wu,et al.  Nonlinear Delay Discrete Inequalities and Their Applications to Volterra Type Difference Equations , 2010 .

[47]  Giuseppina Autuori,et al.  Asymptotic stability for anisotropic Kirchhoff systems , 2009 .

[48]  A. Ambrosetti,et al.  Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity , 2006 .

[49]  A. Ambrosetti,et al.  Semiclassical States of Nonlinear Schrödinger Equations , 1997 .

[50]  A. Ambrosetti,et al.  A P ] 2 3 N ov 2 00 0 Multiplicity results for some nonlinear Schrödinger equations with potentials , 2000 .

[51]  M. Willem Minimax Theorems , 1997 .