Forest processes from stands to landscapes: exploring model forecast uncertainties using cross-scale model comparison

Forest management practices conducted primarily at the stand scale result in simplified forests with regeneration problems and low structural and biological diversity. Landscape models have been used to help design management strat- egies to address these problems. However, there remains a great deal of uncertainty that the actual management practices result in the desired sustainable landscape structure. To investigate our ability to meet sustainable forest management goals across scales, we assessed how two models of forest dynamics, a scaled-up individual-tree model and a landscape model, simulate forest dynamics under three types of harvesting regimes: clearcut, gap, and uniform thinning. Althougth 50- 100 year forecasts predicted average successional patterns that differed by less than 20% between models, understory dy- namics of the landscape model were simplified relative to the scaled-up tree model, whereas successional patterns of the scaled-up tree model deviated from empirical studies on the driest and wettest landtypes. The scale dependencies of both models revealed important weaknesses when the models were used alone; however, when used together, they could pro- vide a heuristic method that could improve our ability to design sustainable forest management practices. Resume´ : Les pratiques d'amenagement forestier qui sont surtout appliquees a l'echelle du peuplement entraoˆnent une sim- plification de la foret et engendrent des problemes de regeneration ainsi qu'une faible diversitestructurale et biologique. Des modeles de paysage ont eteutilises pour aider a elaborer des strategies qui s'attaquent aces problemes. Cependant, beaucoup d'incertitude persiste quant asavoir si les pratiques actuelles d'amenagement produisent une structure vraiment durable du paysage. Dans le but d'examiner notre capaciteaatteindre les objectifs de l'amenagement forestier durable peu importe l'echelle, nous avons evaluede quelle facon deux modeles de dynamique forestiere, un modele elargi d'arbre indi- viduel et un modele de paysage, simulent la dynamique de la foret soumise a trois regimes de coupe : rase, par trouees et eclaircie uniforme. Meme si les previsions sur 50 a 100 ans produisaient des patrons de succession moyens qui differaient par moins de 20 % selon le modele, la dynamique de sous-bois du modele de paysage etait simplifiee relativement au mo- dele elargi d'arbre individuel, tandis que les patrons de succession du modele elargi d'arbre individuel deviaient des etudes empiriques sur les stations les plus seches et les plus humides. Le fait que les deux modeles soient dependants de l'echelle fait ressortir d'importantes faiblesses lorsqu'ils sont utilisess eparement. Par contre, utilises ensemble ils pourraient fournir une methode heuristique capable d'ameliorer notre capaciteaconcevoir des pratiques d'amenagement forestier durable. (Traduit par la Redaction)

[1]  Pierre Lasserre,et al.  Research, part of a Special Feature on Crossing Scales and Disciplines to Achieve Forest Sustainability A Real Options Approach to Forest-Management Decision Making to Protect Caribou under the Threat of Extinction , 2008 .

[2]  R. Busing Forest Dynamics and Disturbance Regimes: Studies from Temperate Evergreen—Deciduous Forests , 2003 .

[3]  J. Franklin Preserving Biodiversity: Species, Ecosystems, or Landscapes? , 1993, Ecological applications : a publication of the Ecological Society of America.

[4]  Jianguo Wu,et al.  UNCERTAINTY ANALYSIS IN ECOLOGICAL STUDIES:AN OVERVIEW , 2006 .

[5]  J. Wiens Spatial Scaling in Ecology , 1989 .

[6]  D. Gilmore Ecosystem management — A needs driven, resource-use philosophy , 1997 .

[7]  Andrew Fall,et al.  A domain-specific language for models of landscape dynamics , 2001 .

[8]  J. P. Kimmins,et al.  Modelling forest ecosystem net primary production : the hybrid simulation approach used in FORECAST , 1999 .

[9]  Michael E. Chang,et al.  Modeling the Effects of Land Use on the Quality of Water, Air, Noise, and Habitat for a Five-County Region in Georgia , 2008 .

[10]  R. Janke,et al.  Seedbed and canopy cover effects on balsam fir seedling establishment in Isle Royale National Park , 1996 .

[11]  David J. Mladenoff,et al.  Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution , 2007 .

[12]  Micheline Manseau,et al.  Research, part of a Special Feature on Crossing Scales and Disciplines to Achieve Forest Sustainability Indigenous Knowledge and Values in Planning for Sustainable Forestry: Pikangikum First Nation and the Whitefeather Forest Initiative , 2008 .

[13]  C. Messier,et al.  Tactical forest planning and landscape design. , 2003 .

[14]  Dazhong Wen Land Mosaics: The Ecology of Landscapes and Regions , 1997 .

[15]  Orie L. Loucks,et al.  Scaling and uncertainty analysis in ecology : methods and applications , 2006 .

[16]  Atsushi Yoshimoto Potential use of a spatially constrained harvest scheduling model for biodiversity concerns: Exclusion periods to create heterogeneity in forest structure , 2001, Journal of Forest Research.

[17]  Garry D. Peterson Contagious Disturbance, Ecological Memory, and the Emergence of Landscape Pattern , 2002, Ecosystems.

[18]  M. Fortin,et al.  Comparing different forest zoning options for landscape-scale management of the boreal forest: possible benefits of the TRIAD. , 2010 .

[19]  Michael J. Papaik,et al.  Neighborhood analyses of canopy tree competition along environmental gradients in New England forests. , 2006, Ecological applications : a publication of the Ecological Society of America.

[20]  D. Mladenoff,et al.  Design, behavior and application of LANDIS, an object-oriented model of forest landscape disturbance and succession. , 1999 .

[21]  Y. Bergeron,et al.  CANOPY GAP CHARACTERISTICS AND TREE REPLACEMENT IN THE SOUTHEASTERN BOREAL FOREST , 1998 .

[22]  F. Thompson,et al.  Songbird Use of Regenerating Forest, Glade, and Edge Habitat Types , 2006 .

[23]  Mathieu Acher,et al.  A domain-specific language for managing feature models , 2011, SAC.

[24]  F. Swanson,et al.  LANDSCAPE MANAGEMENT USING HISTORICAL FIRE REGIMES: BLUE RIVER, OREGON , 1999 .

[25]  J. Fisher,et al.  The response of mammals to forest fire and timber harvest in the North American boreal forest , 2005 .

[26]  Malcolm L. Hunter,et al.  Wildlife, Forests and Forestry: Principles of Managing Forests for Biological Diversity , 1989 .

[27]  S. Pacala,et al.  Forest models defined by field measurements : Estimation, error analysis and dynamics , 1996 .

[28]  Anthony W King,et al.  Aggregating Fine-Scale Ecological Knowledge to Model Coarser-Scale Attributes of Ecosystems. , 1992, Ecological applications : a publication of the Ecological Society of America.

[29]  C. Messier,et al.  Development of integrated ecological standards of sustainable forest management at an operational scale , 2000 .

[30]  Wiktor L. Adamowicz,et al.  Towards sustainable management of the boreal forest. , 2003 .

[31]  M. Fortin,et al.  Integration of ecological knowledge, landscape modelling, and public participation for the development of sustainable forest management , 2001 .

[32]  A. Diamond,et al.  Patterns of breeding bird abundance in relation to logging in western Labrador , 2000 .

[33]  J. Peterson,et al.  MODELING THE EFFECTS OF LAND USE AND CLIMATE CHANGE ON RIVERINE SMALLMOUTH BASS , 1999 .

[34]  Andrew Fall,et al.  Consequences of various landscape-scale ecosystem management strategies and fire cycles on age-class structure and harvest in boreal forests , 2004 .

[35]  Y. Bergeron SPECIES AND STAND DYNAMICS IN THE MIXED WOODS OF QUEBEC'S SOUTHERN BOREAL FOREST , 2000 .

[36]  Han Y. H. Chen,et al.  Dynamics of North American boreal mixedwoods , 2002 .

[37]  D. Mladenoff LANDIS and forest landscape models , 2004 .

[38]  M. Fortin,et al.  Spatially explicit simulation of long-term boreal forest landscape dynamics: incorporating quantitative stand attributes , 2004 .

[39]  M. Fortin,et al.  The effect of light availability and basal area on cone production in Abies balsamea and Picea glauca , 2002 .

[40]  A. Shvidenko,et al.  Predicting global change effects on forest biomass and composition in south-central Siberia. , 2010, Ecological applications : a publication of the Ecological Society of America.

[41]  Andrew Fall,et al.  Insight, part of a Special Feature on Crossing Scales and Disciplines to Achieve Forest Sustainability A Toolkit Modeling Approach for Sustainable Forest Management Planning: Achieving Balance between Science and Local Needs , 2007 .

[42]  S. Pacala,et al.  Predicting and understanding forest dynamics using a simple tractable model , 2008, Proceedings of the National Academy of Sciences.

[43]  Michael J. Papaik,et al.  Structural changes and potential vertebrate responses following simulated partial harvesting of boreal mixedwood stands , 2011 .

[44]  Debra P. C. Peters,et al.  Strategies for ecological extrapolation , 2004 .

[45]  C. Messier,et al.  Hierarchical forest management planning and sustainable forest management in the boreal forest , 2001 .

[46]  Alain Leduc,et al.  Forest management guidelines based on natural disturbance dynamics: Stand- and forest-level considerations , 1999 .

[47]  Michael J. Papaik,et al.  Multi-model analysis of tree competition along environmental gradients in southern New England forests. , 2006, Ecological applications : a publication of the Ecological Society of America.

[48]  Christian Messier,et al.  Use of a spatially explicit individual-tree model (SORTIE/BC) to explore the implications of patchiness in structurally complex forests , 2003 .

[49]  Charles D. Canham,et al.  Interspecific variation in susceptibility to windthrow as a function of tree size and storm severity for northern temperate tree species , 2001 .

[50]  Dean L. Urban,et al.  MODELING ECOLOGICAL PROCESSES ACROSS SCALES , 2005 .