Design of a sigma-delta modulator in standard CMOS process for wide-temperature applications

We present a delta-sigma modulator in a standard CMOS process that is designed to operate over a wide temperature range from -55 oC to 225 oC. The circuit is implemented using IBM 0.13μm CMOS technology with 2.5V power supply. We applied constant-gm biasing technique and other design considerations to compensate performance degradation over temperature variation. Simulation results show that the modulator offers a minimum ENOB of 14 bits over the desired wide temperature range.

[1]  Steve Majerus,et al.  Design and long-term operation of high-temperature, bulk-CMOS integrated circuits for instrumentation and control , 2013, 2013 IEEE Energytech.

[2]  I. Finvers,et al.  A 14-bit high-temperature ΣΔ modulator in standard CMOS , 2003, IEEE J. Solid State Circuits.

[3]  Randall Kirschman The Requirements for High Temperature Electronics in a Future High Speed Civil Transport , 1999 .

[4]  Xinyu Yu High-temperature Bulk CMOS Integrated Circuits for Data Acquisition , 2006 .

[5]  S. Beeby,et al.  MEMS Mechanical Sensors , 2004 .

[6]  Xinyu Yu,et al.  A 300 °C, 110-dB Sigma-Delta Modulator with Programmable Gain in Bulk CMOS , 2006, IEEE Custom Integrated Circuits Conference 2006.

[7]  Jeff Watson,et al.  High-Temperature Electronics Pose Design and Reliability Challenges , 2012 .

[8]  F. Patrick McCluskey,et al.  High Temperature Electronics , 1997 .

[9]  Vamsy P. Chodavarapu,et al.  Design of a CMOS readout circuit for wide-temperature range capacitive MEMS sensors , 2014, Fifteenth International Symposium on Quality Electronic Design.

[10]  F. S. Shoucair Potential and problems of high-temperature electronics and CMOS integrated circuits (25–250°C) - an overview , 1991 .

[11]  Phillip E Allen,et al.  CMOS Analog Circuit Design , 1987 .

[12]  Vamsy P. Chodavarapu,et al.  High-temperature general purpose operational amplifier in IBM 0.13 µm CMOS process , 2014, 2014 IEEE International Conference on Electron Devices and Solid-State Circuits.

[13]  M. Mehregany,et al.  SiC JFET integrated circuits for sensing and control at temperatures up to 600°C , 2012, 2012 IEEE Energytech.

[14]  P. Neudeck,et al.  High-temperature electronics - a role for wide bandgap semiconductors? , 2002, Proc. IEEE.

[15]  Shahriar Mirabbasi,et al.  A 2.5 V 0.13 μm CMOS amplifier for a high-temperature sensor system , 2009, 2009 Joint IEEE North-East Workshop on Circuits and Systems and TAISA Conference.

[16]  D. Flandre,et al.  Ultra low power, harsh environment SOI-CMOS design of temperature sensor based threshold detection and wake-up IC , 2010, 2010 IEEE International SOI Conference (SOI).

[17]  Hans L. Hartnagel,et al.  High temperature electronics , 1996 .

[18]  Masayoshi Esashi Revolution of Sensors in Micro-Electromechanical Systems , 2012 .