SN 2010jl: OPTICAL TO HARD X-RAY OBSERVATIONS REVEAL AN EXPLOSION EMBEDDED IN A TEN SOLAR MASS COCOON
暂无分享,去创建一个
Chris L. Fryer | E. Ofek | J. Bloom | P. Nugent | E. Nakar | S. Kulkarni | I. Arcavi | E. Bellm | A. Gal-yam | D. Stern | A. Filippenko | R. Laher | J. Surace | M. Sullivan | S. Reynolds | N. Barrière | F. Christensen | F. Harrison | K. Madsen | S. Boggs | A. Zoglauer | B. Grefenstette | W. Craig | C. Hailey | W. Zhang | W. Even | S. Cenko | S. Kulkarni | D. Stern | D. Stern | A. Filippenko | S. Kulkarni
[1] Emilio Molina,et al. Summary and Discussion , 2014 .
[2] R. McCray,et al. Supernova Environmental Impacts , 2014 .
[3] J. Sollerman,et al. An analytic bolometric light curve model of interaction-powered supernovae and its application to Type IIn supernovae , 2013, 1307.2644.
[4] S. Schwartz,et al. Electron-Ion Temperature Equilibration in Collisionless Shocks: The Supernova Remnant-Solar Wind Connection , 2013, 1305.6617.
[5] E. Ofek,et al. SN 2009ip: CONSTRAINTS ON THE PROGENITOR MASS-LOSS RATE , 2013, 1303.3894.
[6] E. Ofek,et al. An outburst from a massive star 40 days before a supernova explosion , 2013, Nature.
[7] William W. Zhang,et al. THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY X-RAY MISSION , 2013, Astronomical Telescopes and Instrumentation.
[8] R. Chevalier. Supernova interaction with dense mass loss , 2013, Proceedings of the International Astronomical Union.
[9] N. Soker,et al. EXPLAINING THE SUPERNOVA IMPOSTOR SN 2009ip AS MERGERBURST , 2012, 1211.5388.
[10] T. Abel,et al. DWARF GALAXIES WITH IONIZING RADIATION FEEDBACK. II. SPATIALLY RESOLVED STAR FORMATION RELATION , 2012, 1210.6988.
[11] M. L. Pumo,et al. INTERACTING SUPERNOVAE AND SUPERNOVA IMPOSTORS: SN 2009ip, IS THIS THE END? , 2012, 1210.3568.
[12] Kelsey I. Clubb,et al. The Unprecedented Third Outburst of SN 2009ip: A Luminous Blue Variable Becomes a Supernova , 2012, 1209.6320.
[13] D. Frail,et al. X-RAY EMISSION FROM SUPERNOVAE IN DENSE CIRCUMSTELLAR MATTER ENVIRONMENTS: A SEARCH FOR COLLISIONLESS SHOCKS , 2012, 1206.0748.
[14] Chris L. Fryer,et al. THE LOS ALAMOS SUPERNOVA LIGHT-CURVE PROJECT: COMPUTATIONAL METHODS , 2012, 1203.5832.
[15] Xu Zhou,et al. TYPE IIn SUPERNOVA SN 2010jl: OPTICAL OBSERVATIONS FOR OVER 500 DAYS AFTER EXPLOSION , 2012, 1208.6078.
[16] A. Gal-yam. Luminous Supernovae , 2012, Science.
[17] S. E. Persson,et al. MULTI-WAVELENGTH OBSERVATIONS OF THE ENDURING TYPE IIn SUPERNOVAE 2005ip AND 2006jd , 2012, 1206.5575.
[18] E. Ofek,et al. The Palomar Transient Factory photometric catalog 1.0 , 2012, 1206.1064.
[19] S. Ginzburg,et al. SUPERLUMINOUS LIGHT CURVES FROM SUPERNOVAE EXPLODING IN A DENSE WIND , 2012, 1205.3455.
[20] P. Chandra,et al. RADIO AND X-RAY OBSERVATIONS OF SN 2006jd: ANOTHER STRONGLY INTERACTING TYPE IIn SUPERNOVA , 2012, 1205.0250.
[21] R. Chevalier. COMMON ENVELOPE EVOLUTION LEADING TO SUPERNOVAE WITH DENSE INTERACTION , 2012, 1204.3300.
[22] A. Gal-yam,et al. WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.
[23] P. Chandra,et al. STRONG EVOLUTION OF X-RAY ABSORPTION IN THE TYPE IIn SUPERNOVA SN 2010jl , 2012, 1203.1614.
[24] Ehud Nakar,et al. OPTICAL TO X-RAY SUPERNOVA LIGHT CURVES FOLLOWING SHOCK BREAKOUT THROUGH A THICK WIND , 2012, 1202.3437.
[25] R. Chevalier,et al. X-RAYS FROM SUPERNOVA SHOCKS IN DENSE MASS LOSS , 2012, 1201.5581.
[26] N. Tominaga,et al. DIVERSITY OF LUMINOUS SUPERNOVAE FROM NON-STEADY MASS LOSS , 2011, 1110.3807.
[27] M. Sullivan,et al. The Palomar Transient Factory Photometric Calibration , 2011, 1112.4851.
[28] Federica B. Bianco,et al. Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star , 2011, Nature.
[29] B. Weiner,et al. SYSTEMATIC BLUESHIFT OF LINE PROFILES IN THE TYPE IIn SUPERNOVA 2010jl: EVIDENCE FOR POST-SHOCK DUST FORMATION? , 2011, 1108.2869.
[30] E. Waxman,et al. X-rays, γ-rays and neutrinos from collisionless shocks in supernova wind breakouts , 2011, Proceedings of the International Astronomical Union.
[31] A. Loeb,et al. Supernova shock breakout through a wind , 2011, 1101.1489.
[32] R. Chevalier,et al. SHOCK BREAKOUT IN DENSE MASS LOSS: LUMINOUS SUPERNOVAE , 2011, 1101.1111.
[33] J. Prieto,et al. SN 2010jl IN UGC 5189: YET ANOTHER LUMINOUS TYPE IIn SUPERNOVA IN A METAL-POOR GALAXY , 2010, 1012.3461.
[34] S. Taubenberger,et al. Asymmetries in the type IIn SN 2010jl , 2010, 1011.5926.
[35] E. Berger,et al. THE DIVERSITY OF MASSIVE STAR OUTBURSTS. I. OBSERVATIONS OF SN2009ip, UGC 2773 OT2009-1, AND THEIR PROGENITORS , 2010, 1002.0635.
[36] E. O. Ofek,et al. Hydrogen-poor superluminous stellar explosions , 2009, Nature.
[37] W. David Arnett,et al. TURBULENT CELLS IN STARS: FLUCTUATIONS IN KINETIC ENERGY AND LUMINOSITY , 2010, 1012.1848.
[38] D. Fox,et al. CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE IIn SUPERNOVAE: TYPICAL PROPERTIES AND IMPLICATIONS FOR THEIR PROGENITOR STARS , 2010, 1010.2689.
[39] E. O. Ofek,et al. SUPERNOVA PTF 09UJ: A POSSIBLE SHOCK BREAKOUT FROM A DENSE CIRCUMSTELLAR WIND , 2010, 1009.5378.
[40] Matemática,et al. Society for Industrial and Applied Mathematics , 2010 .
[41] E. Nakar,et al. EARLY SUPERNOVAE LIGHT CURVES FOLLOWING THE SHOCK BREAKOUT , 2010, 1004.2496.
[42] W. M. Wood-Vasey,et al. PUSHING THE BOUNDARIES OF CONVENTIONAL CORE-COLLAPSE SUPERNOVAE: THE EXTREMELY ENERGETIC SUPERNOVA SN 2003ma , 2009, 0911.2002.
[43] Lars Bildsten,et al. SUPERNOVA LIGHT CURVES POWERED BY YOUNG MAGNETARS , 2009, 0911.0680.
[44] Jessica R. Lu,et al. DISCOVERY OF PRECURSOR LUMINOUS BLUE VARIABLE OUTBURSTS IN TWO RECENT OPTICAL TRANSIENTS: THE FITFULLY VARIABLE MISSING LINKS UGC 2773-OT AND SN 2009ip , 2009, 0909.4792.
[45] Ernest E. Croner,et al. The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.
[46] Oxford,et al. Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.
[47] A. Gal-yam,et al. A massive hypergiant star as the progenitor of the supernova SN 2005gl , 2009, Nature.
[48] John A. Nousek,et al. ULTRAVIOLET LIGHT CURVES OF SUPERNOVAE WITH THE SWIFT ULTRAVIOLET/OPTICAL TELESCOPE , 2009 .
[49] Gnat Orly,et al. METAL-ABSORPTION COLUMN DENSITIES IN FAST RADIATIVE SHOCKS , 2009 .
[50] R. Foley,et al. CORONAL LINES AND DUST FORMATION IN SN 2005ip: NOT THE BRIGHTEST, BUT THE HOTTEST TYPE IIn SUPERNOVA , 2008, 0809.5079.
[51] R. Waldman. The Most Massive Core-Collapse Supernova Progenitors , 2008, 0806.3544.
[52] R. Foley,et al. SN 2006tf: Precursor Eruptions and the Optically Thick Regime of Extremely Luminous Type IIn Supernovae , 2008, 0804.0042.
[53] D. Berk,et al. Ultraviolet Light Curves of Supernovae with Swift Uvot , 2008, 0803.1265.
[54] S. Woosley,et al. Pulsational pair instability as an explanation for the most luminous supernovae , 2007, Nature.
[55] M. J. Page,et al. Photometric calibration of the Swift ultraviolet/optical telescope , 2007, 0708.2259.
[56] A. Pastorello,et al. A giant outburst two years before the core-collapse of a massive star , 2007, Nature.
[57] Mohan Ganeshalingam,et al. SN 2006jc: A Wolf-Rayet Star Exploding in a Dense He-rich Circumstellar Medium , 2006, astro-ph/0612711.
[58] D. Fox,et al. On the Progenitor of SN 2005gl and the Nature of Type IIn Supernovae , 2006, astro-ph/0608029.
[59] Jean-Luc Starck,et al. Astronomical Data Analysis , 2007 .
[60] M. Kenward,et al. An Introduction to the Bootstrap , 2007 .
[61] Susan A. Murphy,et al. Monographs on statistics and applied probability , 1990 .
[62] Charles E. Hansen,et al. SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae , 2006, astro-ph/0612617.
[63] J. Sollerman,et al. SN 1994W: Evidence of Explosive Mass Ejection a Few Years Before Explosion , 2003, astro-ph/0309226.
[64] Alan A. Wells,et al. The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.
[65] Richard M. Ambrosi,et al. SWIFT XRT point spread function measured at the Panter end-to-end tests , 2004, SPIE Optics + Photonics.
[66] C. McKee,et al. The Expulsion of Stellar Envelopes in Core-Collapse Supernovae , 1998, astro-ph/9807046.
[67] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[68] R. Chevalier. Synchrotron Self-Absorption in Radio Supernovae , 1998 .
[69] D. Schlegel,et al. Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.
[70] Alexei V. Filippenko,et al. Optical spectra of supernovae , 1997 .
[71] N. Chugai,et al. SN 1988Z: low-mass ejecta colliding with the clumpy wind? , 1994 .
[72] R. Chevalier,et al. Emission from circumstellar interaction in normal Type II supernovae , 1994 .
[73] B. Draine,et al. Theory of Interstellar Shocks , 1993 .
[74] Jennifer L. Discenna,et al. The 10 Year Radio Light Curves for SN 1979C , 1991 .
[75] R. A. Shafer,et al. XSPEC: An x ray spectral fitting package. Version 2 of the user's guide , 1991 .
[76] J. Dickey,et al. H I in the Galaxy , 1990 .
[77] J. Mathis,et al. The relationship between infrared, optical, and ultraviolet extinction , 1989 .
[78] B. Efron. The jackknife, the bootstrap, and other resampling plans , 1987 .
[79] M. Dopita,et al. The 1984 supernova in NGC 3169: evidence for a superwind , 1984 .
[80] B. Efron,et al. The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .
[81] Dan McCammon,et al. Interstellar photoelectric absorption cross-sections, 0.03-10 keV , 1983 .
[82] R. Chevalier. The radio and X-ray emission from type II supernovae. , 1982 .
[83] David Arnett,et al. Radiation Dynamics, Envelope Ejection, and Supernova Light Curves , 1977 .
[84] T. Weaver. The structure of supernova shock waves. , 1976 .
[85] D. Arnett,et al. A Theoretical Model for Type II Supernovae , 1973 .
[86] G. Shaviv,et al. CARBON AND OXYGEN BURNING STARS AND PRE-SUPERNOVA MODELS. , 1967 .