SN 2010jl: OPTICAL TO HARD X-RAY OBSERVATIONS REVEAL AN EXPLOSION EMBEDDED IN A TEN SOLAR MASS COCOON

Some supernovae (SNe) may be powered by the interaction of the SN ejecta with a large amount of circumstellar matter (CSM). However, quantitative estimates of the CSM mass around such SNe are missing when the CSM material is optically thick. Specifically, current estimators are sensitive to uncertainties regarding the CSM density profile and the ejecta velocity. Here we outline a method to measure the mass of the optically thick CSM around such SNe. We present new visible-light and X-ray observations of SN 2010jl (PTF 10aaxf), including the first detection of an SN in the hard X-ray band using NuSTAR. The total radiated luminosity of SN 2010jl is extreme—at least 9 × 1050 erg. By modeling the visible-light data, we robustly show that the mass of the circumstellar material within ∼1016 cm of the progenitor of SN 2010jl was in excess of 10 M☉. This mass was likely ejected tens of years prior to the SN explosion. Our modeling suggests that the shock velocity during shock breakout was ∼6000 km s−1, decelerating to ∼2600 km s−1 about 2 yr after maximum light. Furthermore, our late-time NuSTAR and XMM spectra of the SN presumably provide the first direct measurement of SN shock velocity 2 yr after the SN maximum light—measured to be in the range of 2000–4500 km s−1 if the ions and electrons are in equilibrium, and ≳ 2000 km s−1 if they are not in equilibrium. This measurement is in agreement with the shock velocity predicted by our modeling of the visible-light data. Our observations also show that the average radial density distribution of the CSM roughly follows an r−2 law. A possible explanation for the ≳ 10 M☉ of CSM and the wind-like profile is that they are the result of multiple pulsational pair instability events prior to the SN explosion, separated from each other by years.

[1]  Emilio Molina,et al.  Summary and Discussion , 2014 .

[2]  R. McCray,et al.  Supernova Environmental Impacts , 2014 .

[3]  J. Sollerman,et al.  An analytic bolometric light curve model of interaction-powered supernovae and its application to Type IIn supernovae , 2013, 1307.2644.

[4]  S. Schwartz,et al.  Electron-Ion Temperature Equilibration in Collisionless Shocks: The Supernova Remnant-Solar Wind Connection , 2013, 1305.6617.

[5]  E. Ofek,et al.  SN 2009ip: CONSTRAINTS ON THE PROGENITOR MASS-LOSS RATE , 2013, 1303.3894.

[6]  E. Ofek,et al.  An outburst from a massive star 40 days before a supernova explosion , 2013, Nature.

[7]  William W. Zhang,et al.  THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY X-RAY MISSION , 2013, Astronomical Telescopes and Instrumentation.

[8]  R. Chevalier Supernova interaction with dense mass loss , 2013, Proceedings of the International Astronomical Union.

[9]  N. Soker,et al.  EXPLAINING THE SUPERNOVA IMPOSTOR SN 2009ip AS MERGERBURST , 2012, 1211.5388.

[10]  T. Abel,et al.  DWARF GALAXIES WITH IONIZING RADIATION FEEDBACK. II. SPATIALLY RESOLVED STAR FORMATION RELATION , 2012, 1210.6988.

[11]  M. L. Pumo,et al.  INTERACTING SUPERNOVAE AND SUPERNOVA IMPOSTORS: SN 2009ip, IS THIS THE END? , 2012, 1210.3568.

[12]  Kelsey I. Clubb,et al.  The Unprecedented Third Outburst of SN 2009ip: A Luminous Blue Variable Becomes a Supernova , 2012, 1209.6320.

[13]  D. Frail,et al.  X-RAY EMISSION FROM SUPERNOVAE IN DENSE CIRCUMSTELLAR MATTER ENVIRONMENTS: A SEARCH FOR COLLISIONLESS SHOCKS , 2012, 1206.0748.

[14]  Chris L. Fryer,et al.  THE LOS ALAMOS SUPERNOVA LIGHT-CURVE PROJECT: COMPUTATIONAL METHODS , 2012, 1203.5832.

[15]  Xu Zhou,et al.  TYPE IIn SUPERNOVA SN 2010jl: OPTICAL OBSERVATIONS FOR OVER 500 DAYS AFTER EXPLOSION , 2012, 1208.6078.

[16]  A. Gal-yam Luminous Supernovae , 2012, Science.

[17]  S. E. Persson,et al.  MULTI-WAVELENGTH OBSERVATIONS OF THE ENDURING TYPE IIn SUPERNOVAE 2005ip AND 2006jd , 2012, 1206.5575.

[18]  E. Ofek,et al.  The Palomar Transient Factory photometric catalog 1.0 , 2012, 1206.1064.

[19]  S. Ginzburg,et al.  SUPERLUMINOUS LIGHT CURVES FROM SUPERNOVAE EXPLODING IN A DENSE WIND , 2012, 1205.3455.

[20]  P. Chandra,et al.  RADIO AND X-RAY OBSERVATIONS OF SN 2006jd: ANOTHER STRONGLY INTERACTING TYPE IIn SUPERNOVA , 2012, 1205.0250.

[21]  R. Chevalier COMMON ENVELOPE EVOLUTION LEADING TO SUPERNOVAE WITH DENSE INTERACTION , 2012, 1204.3300.

[22]  A. Gal-yam,et al.  WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.

[23]  P. Chandra,et al.  STRONG EVOLUTION OF X-RAY ABSORPTION IN THE TYPE IIn SUPERNOVA SN 2010jl , 2012, 1203.1614.

[24]  Ehud Nakar,et al.  OPTICAL TO X-RAY SUPERNOVA LIGHT CURVES FOLLOWING SHOCK BREAKOUT THROUGH A THICK WIND , 2012, 1202.3437.

[25]  R. Chevalier,et al.  X-RAYS FROM SUPERNOVA SHOCKS IN DENSE MASS LOSS , 2012, 1201.5581.

[26]  N. Tominaga,et al.  DIVERSITY OF LUMINOUS SUPERNOVAE FROM NON-STEADY MASS LOSS , 2011, 1110.3807.

[27]  M. Sullivan,et al.  The Palomar Transient Factory Photometric Calibration , 2011, 1112.4851.

[28]  Federica B. Bianco,et al.  Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star , 2011, Nature.

[29]  B. Weiner,et al.  SYSTEMATIC BLUESHIFT OF LINE PROFILES IN THE TYPE IIn SUPERNOVA 2010jl: EVIDENCE FOR POST-SHOCK DUST FORMATION? , 2011, 1108.2869.

[30]  E. Waxman,et al.  X-rays, γ-rays and neutrinos from collisionless shocks in supernova wind breakouts , 2011, Proceedings of the International Astronomical Union.

[31]  A. Loeb,et al.  Supernova shock breakout through a wind , 2011, 1101.1489.

[32]  R. Chevalier,et al.  SHOCK BREAKOUT IN DENSE MASS LOSS: LUMINOUS SUPERNOVAE , 2011, 1101.1111.

[33]  J. Prieto,et al.  SN 2010jl IN UGC 5189: YET ANOTHER LUMINOUS TYPE IIn SUPERNOVA IN A METAL-POOR GALAXY , 2010, 1012.3461.

[34]  S. Taubenberger,et al.  Asymmetries in the type IIn SN 2010jl , 2010, 1011.5926.

[35]  E. Berger,et al.  THE DIVERSITY OF MASSIVE STAR OUTBURSTS. I. OBSERVATIONS OF SN2009ip, UGC 2773 OT2009-1, AND THEIR PROGENITORS , 2010, 1002.0635.

[36]  E. O. Ofek,et al.  Hydrogen-poor superluminous stellar explosions , 2009, Nature.

[37]  W. David Arnett,et al.  TURBULENT CELLS IN STARS: FLUCTUATIONS IN KINETIC ENERGY AND LUMINOSITY , 2010, 1012.1848.

[38]  D. Fox,et al.  CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE IIn SUPERNOVAE: TYPICAL PROPERTIES AND IMPLICATIONS FOR THEIR PROGENITOR STARS , 2010, 1010.2689.

[39]  E. O. Ofek,et al.  SUPERNOVA PTF 09UJ: A POSSIBLE SHOCK BREAKOUT FROM A DENSE CIRCUMSTELLAR WIND , 2010, 1009.5378.

[40]  Matemática,et al.  Society for Industrial and Applied Mathematics , 2010 .

[41]  E. Nakar,et al.  EARLY SUPERNOVAE LIGHT CURVES FOLLOWING THE SHOCK BREAKOUT , 2010, 1004.2496.

[42]  W. M. Wood-Vasey,et al.  PUSHING THE BOUNDARIES OF CONVENTIONAL CORE-COLLAPSE SUPERNOVAE: THE EXTREMELY ENERGETIC SUPERNOVA SN 2003ma , 2009, 0911.2002.

[43]  Lars Bildsten,et al.  SUPERNOVA LIGHT CURVES POWERED BY YOUNG MAGNETARS , 2009, 0911.0680.

[44]  Jessica R. Lu,et al.  DISCOVERY OF PRECURSOR LUMINOUS BLUE VARIABLE OUTBURSTS IN TWO RECENT OPTICAL TRANSIENTS: THE FITFULLY VARIABLE MISSING LINKS UGC 2773-OT AND SN 2009ip , 2009, 0909.4792.

[45]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[46]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[47]  A. Gal-yam,et al.  A massive hypergiant star as the progenitor of the supernova SN 2005gl , 2009, Nature.

[48]  John A. Nousek,et al.  ULTRAVIOLET LIGHT CURVES OF SUPERNOVAE WITH THE SWIFT ULTRAVIOLET/OPTICAL TELESCOPE , 2009 .

[49]  Gnat Orly,et al.  METAL-ABSORPTION COLUMN DENSITIES IN FAST RADIATIVE SHOCKS , 2009 .

[50]  R. Foley,et al.  CORONAL LINES AND DUST FORMATION IN SN 2005ip: NOT THE BRIGHTEST, BUT THE HOTTEST TYPE IIn SUPERNOVA , 2008, 0809.5079.

[51]  R. Waldman The Most Massive Core-Collapse Supernova Progenitors , 2008, 0806.3544.

[52]  R. Foley,et al.  SN 2006tf: Precursor Eruptions and the Optically Thick Regime of Extremely Luminous Type IIn Supernovae , 2008, 0804.0042.

[53]  D. Berk,et al.  Ultraviolet Light Curves of Supernovae with Swift Uvot , 2008, 0803.1265.

[54]  S. Woosley,et al.  Pulsational pair instability as an explanation for the most luminous supernovae , 2007, Nature.

[55]  M. J. Page,et al.  Photometric calibration of the Swift ultraviolet/optical telescope , 2007, 0708.2259.

[56]  A. Pastorello,et al.  A giant outburst two years before the core-collapse of a massive star , 2007, Nature.

[57]  Mohan Ganeshalingam,et al.  SN 2006jc: A Wolf-Rayet Star Exploding in a Dense He-rich Circumstellar Medium , 2006, astro-ph/0612711.

[58]  D. Fox,et al.  On the Progenitor of SN 2005gl and the Nature of Type IIn Supernovae , 2006, astro-ph/0608029.

[59]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[60]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[61]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[62]  Charles E. Hansen,et al.  SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae , 2006, astro-ph/0612617.

[63]  J. Sollerman,et al.  SN 1994W: Evidence of Explosive Mass Ejection a Few Years Before Explosion , 2003, astro-ph/0309226.

[64]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[65]  Richard M. Ambrosi,et al.  SWIFT XRT point spread function measured at the Panter end-to-end tests , 2004, SPIE Optics + Photonics.

[66]  C. McKee,et al.  The Expulsion of Stellar Envelopes in Core-Collapse Supernovae , 1998, astro-ph/9807046.

[67]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[68]  R. Chevalier Synchrotron Self-Absorption in Radio Supernovae , 1998 .

[69]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[70]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[71]  N. Chugai,et al.  SN 1988Z: low-mass ejecta colliding with the clumpy wind? , 1994 .

[72]  R. Chevalier,et al.  Emission from circumstellar interaction in normal Type II supernovae , 1994 .

[73]  B. Draine,et al.  Theory of Interstellar Shocks , 1993 .

[74]  Jennifer L. Discenna,et al.  The 10 Year Radio Light Curves for SN 1979C , 1991 .

[75]  R. A. Shafer,et al.  XSPEC: An x ray spectral fitting package. Version 2 of the user's guide , 1991 .

[76]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[77]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[78]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[79]  M. Dopita,et al.  The 1984 supernova in NGC 3169: evidence for a superwind , 1984 .

[80]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[81]  Dan McCammon,et al.  Interstellar photoelectric absorption cross-sections, 0.03-10 keV , 1983 .

[82]  R. Chevalier The radio and X-ray emission from type II supernovae. , 1982 .

[83]  David Arnett,et al.  Radiation Dynamics, Envelope Ejection, and Supernova Light Curves , 1977 .

[84]  T. Weaver The structure of supernova shock waves. , 1976 .

[85]  D. Arnett,et al.  A Theoretical Model for Type II Supernovae , 1973 .

[86]  G. Shaviv,et al.  CARBON AND OXYGEN BURNING STARS AND PRE-SUPERNOVA MODELS. , 1967 .