On the rate of convergence to stationarity of the M/M/N queue in the Halfin–Whitt regime

We prove several results about the rate of convergence to stationarity, that is, the spectral gap, for the M/M/n queue in the Halfin-Whitt regime. We identify the limiting rate of convergence to steady-state, and discover an asymptotic phase transition that occurs w.r.t. this rate. In particular, we demonstrate the existence of a constant $B^*\approx1.85772$ s.t. when a certain excess parameter $B\in(0,B^*]$, the error in the steady-state approximation converges exponentially fast to zero at rate $\frac{B^2}{4}$. For $B>B^*$, the error in the steady-state approximation converges exponentially fast to zero at a different rate, which is the solution to an explicit equation given in terms of special functions. This result may be interpreted as an asymptotic version of a phase transition proven to occur for any fixed n by van Doorn [Stochastic Monotonicity and Queueing Applications of Birth-death Processes (1981) Springer]. We also prove explicit bounds on the distance to stationarity for the M/M/n queue in the Halfin-Whitt regime, when $B<B^*$. Our bounds scale independently of $n$ in the Halfin-Whitt regime, and do not follow from the weak-convergence theory.

[1]  K. Ramanan,et al.  Asymptotic approximations for stationary distributions of many-server queues with abandonment , 2010, 1003.3373.

[2]  E. A. vanDoorn,et al.  Conditions for exponential ergodicity and bounds for the Deacy parameters of a birth-death process , 1982 .

[3]  D. Iglehart Limiting diffusion approximations for the many server queue and the repairman problem , 1965 .

[4]  Alexander I. Zeifman,et al.  On the speed of convergence to stationarity of the Erlang loss system , 2009, Queueing Syst. Theory Appl..

[5]  Roderick Wong,et al.  Uniform asymptotic expansion of Charlier polynomials , 1994 .

[6]  Samuel Karlin,et al.  Many server queueing processes with Poisson input and exponential service times , 1958 .

[7]  S. Karlin,et al.  The differential equations of birth-and-death processes, and the Stieltjes moment problem , 1957 .

[8]  J. Reed,et al.  The G/GI/N queue in the Halfin–Whitt regime , 2009, 0912.2837.

[9]  C. Knessl,et al.  Transient behaviour of the Halfin-Whitt diffusion , 2011 .

[10]  D. Dominici Asymptotic analysis of the Askey-scheme I: from Krawtchouk to Charlier , 2005, math/0501072.

[11]  M. Reiman,et al.  The multiclass GI/PH/N queue in the Halfin-Whitt regime , 2000, Advances in Applied Probability.

[12]  E. A. Doorn Stochastic Monotonicity and Queueing Applications of Birth-Death Processes , 1981 .

[13]  Evaluation of the decay parameter for some specialized birth-death processes , 1992 .

[14]  Charles Knessl,et al.  On the Transient Behavior of the Erlang Loss Model: Heavy Usage asymptotics , 1993, SIAM J. Appl. Math..

[15]  A. DoornvanErik,et al.  Bounds and asymptotics for the rate of convergence of birth-death processes , 2008 .

[16]  Quantum mechanics of damped systems. II. Damping and parabolic potential barrier , 2003, math-ph/0307047.

[17]  F. Pollaczek Sur l'application de la théorie des fonctions au calcul de certaines probabilités continues utilisées dans la théorie des réseaux téléphoniques , 1946 .

[18]  Charles Knessl,et al.  Spectral gap of the Erlang A model in the Halfin-Whitt regime , 2012 .

[19]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[20]  Ajem Guido Janssen,et al.  Back to the roots of the M/D/"s" queue and the works of Erlang, Crommelin and Pollaczek , 2008 .

[21]  David Gamarnik,et al.  Steady-state analysis of a multiserver queue in the Halfin-Whitt regime , 2007, Advances in Applied Probability.

[22]  Philip M. Morse,et al.  Stochastic Properties of Waiting Lines , 1955, Oper. Res..

[23]  E. V. Doorn,et al.  On Oscillation Properties and the Interval of Orthogonality of Orthogonal Polynomials , 1982 .

[24]  P. Diaconis,et al.  The cutoff phenomenon in finite Markov chains. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[25]  C. Mufa ExponentialL2-convergence andL2-spectral gap for Markov processes , 1991 .

[26]  Quantum mechanics of damped systems , 2003 .

[27]  Avishai Mandelbaum,et al.  Telephone Call Centers: Tutorial, Review, and Research Prospects , 2003, Manuf. Serv. Oper. Manag..

[28]  Erik A. van Doorn,et al.  Representations and bounds for zeros of Orthogonal polynomials and eigenvalues of sign-symmetric tri-diagonal matrices , 1987 .

[29]  C. Mufa Estimate of exponential convergence rate in total variation by spectral gap , 1998 .

[30]  Junesang Choi,et al.  ON THE EULER'S CONSTANT , 1997 .

[31]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[32]  Zeynep Akşin,et al.  The Modern Call Center: A Multi‐Disciplinary Perspective on Operations Management Research , 2007 .

[33]  Ward Whitt,et al.  Stochastic Monotonicity and Queueing Applications of Birth-Death Processes (Lecture Notes in Statistics, No. 4). , 1983 .

[34]  van E.A. Doorn Conditions for exponential ergodicity and bounds for the Deacy parameters of a birth-death process , 1982 .

[35]  A. Markushevich Analytic Function Theory , 1996 .

[36]  Avishai Mandelbaum,et al.  Queues with Many Servers: The Virtual Waiting-Time Process in the QED Regime , 2008, Math. Oper. Res..

[37]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[38]  F. Burk Euler's Constant , 1985 .

[39]  D. Dominici Asymptotic analysis of the Krawtchouk polynomials by the WKB method , 2005, math/0501042.

[40]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[41]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[42]  Thomas L. Saaty,et al.  Time-Dependent Solution of the Many-Server Poisson Queue , 1960 .

[43]  T. Mark Dunster Uniform Asymptotic Expansions for Charlier Polynomials , 2001, J. Approx. Theory.

[44]  Quantum mechanics of damped systems. II. Damping and parabolic potential barrier , 2004 .

[45]  Thomas K. Caughey,et al.  Spectral density of piecewise linear first order systems excited by white noise , 1968 .

[46]  H. Bateman,et al.  Higher Transcendental Functions [Volumes I-III] , 1953 .

[47]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[48]  G. Reuter,et al.  Spectral theory for the differential equations of simple birth and death processes , 1954, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[49]  A. Clarke,et al.  A Waiting Line Process of Markov Type , 1956 .

[50]  D. Jagerman Some properties of the erlang loss function , 1974 .

[51]  Representations for the rate of convergence of birth-death processes , 2001 .

[52]  Philippe Robert,et al.  On the rates of convergence of Erlang's model , 1999 .

[53]  Ward Whitt,et al.  Heavy-Traffic Limits for Queues with Many Exponential Servers , 1981, Oper. Res..

[54]  Predrag R. Jelenkovic,et al.  Heavy Traffic Limits for Queues with Many Deterministic Servers , 2004, Queueing Syst. Theory Appl..

[55]  Laguerre,et al.  Asymptotic analysis of the Askey-scheme II : from Charlier to Hermite , 2022 .

[56]  H. Buchholz The Confluent Hypergeometric Function , 2021, A Course of Modern Analysis.

[57]  Alexander I. Zeifman Some estimates of the rate of convergence for birth and death processes , 1991 .