Analysis of the Respiratory Chain in Ethanologenic Zymomonas mobilis with a Cyanide-Resistant bd-Type Ubiquinol Oxidase as the Only Terminal Oxidase and Its Possible Physiological Roles

The respiratory chain of the ethanologenic bacterium Zymomonas mobilis was investigated, in which the pyruvate-to-ethanol pathway has been demonstrated to be mainly responsible for NADH oxidation and the tricarboxylic acid cycle is incomplete. Membranes from cells cultivated under aerobic or anaerobic growth conditions showed dehydrogenase and oxidase activities for NADH, D-lactate and D-glucose and ubiquinol oxidase activity. Intriguingly, the NADH oxidase activity level of membrane fractions from cells grown aerobically was found to be higher than that of membrane fractions from Escherichia coli or Pseudomonas putida grown aerobically, indicating a crucial role of the respiratory chain in NADH oxidation in the organism. Cyanide-resistant terminal oxidase activity was observed and appeared to be due to a bd-type ubiquinol oxidase as the only terminal oxidase encoded by the entire genome. The terminal oxidase with a relatively strong ubiquinol oxidase activity exhibited remarkably weak signals of cytochrome d. Considering these findings and the presence of a type-II NADH dehydrogenase but not a type-I, a simple respiratory chain that generates less energymay have evolved in Z. mobilis.

[1]  S. Rhee,et al.  A novel aerobic respiratory chain-linked NADH oxidase system in Zymomonas mobilis , 1995, Journal of bacteriology.

[2]  K. Matsushita,et al.  o‐Type cytochrome oxidase in the membrane of aerobically grown Pseudomonas aeruginosa , 1982, FEBS letters.

[3]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[4]  M. Yamada,et al.  C-terminal Periplasmic Domain of Escherichia coliQuinoprotein Glucose Dehydrogenase Transfers Electrons to Ubiquinone* , 2001, The Journal of Biological Chemistry.

[5]  H. Kaback,et al.  Cytochrome o type oxidase from Escherichia coli. Characterization of the enzyme and mechanism of electrochemical proton gradient generation. , 1984, Biochemistry.

[6]  J. V. Van Beeumen,et al.  Cloning, overproduction and characterization of cytochrome c peroxidase from the purple phototrophic bacterium Rhodobacter capsulatus. , 2001, European journal of biochemistry.

[7]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[8]  L. Cunningham,et al.  The cioAB genes from Pseudomonas aeruginosa code for a novel cyanide‐insensitive terminal oxidase related to the cytochrome bd quinol oxidases , 1997, Molecular microbiology.

[9]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO 1 , an opportunistic pathogen , 2000 .

[10]  H. Izu,et al.  Functions of Amino Acid Residues in the Active Site ofEscherichia coli Pyrroloquinoline Quinone-Containing Quinoprotein Glucose Dehydrogenase* , 2000, The Journal of Biological Chemistry.

[11]  H. Sahm,et al.  Electron transport chain of Zymomonas mobilis , 1990, Archives of Microbiology.

[12]  G. Michel,et al.  Ethanol effect on the membrane protein pattern of Zymomonas mobilis. , 1985, Annales de l'Institut Pasteur. Microbiologie.

[13]  Y. Yamada,et al.  Topological analysis of quinoprotein glucose dehydrogenase in Escherichia coli and its ubiquinone-binding site. , 1993, The Journal of biological chemistry.

[14]  K. Matsushita,et al.  Three distinct quinoprotein alcohol dehydrogenases are expressed when Pseudomonas putida is grown on different alcohols , 1995, Journal of bacteriology.

[15]  J. Willison,et al.  Overexpression in Escherichia coli of the rnf genes from Rhodobacter capsulatus--characterization of two membrane-bound iron-sulfur proteins. , 1998, European journal of biochemistry.

[16]  M. Yamada,et al.  Membrane-bound respiratory chain of Pseudomonas aeruginosa grown aerobically , 1980, Journal of bacteriology.

[17]  R. Poole,et al.  Cyanide inhibits respiration yet stimulates aerobic growth of Zymomonas mobilis. , 2000, Microbiology.

[18]  K. Matsushita,et al.  Purification and Characterization of Particulate Alcohol Dehydrogenase from Gluconobacter suboxydans , 1978 .

[19]  K. Matsushita,et al.  Change of the terminal oxidase from cytochrome a1 in shaking cultures to cytochrome o in static cultures of Acetobacter aceti , 1992, Journal of bacteriology.

[20]  Hyun Seok Park,et al.  The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4 , 2005, Nature Biotechnology.

[21]  R. Gennis,et al.  Nitrogen and proton ENDOR of cytochrome d, hemin, and metmyoglobin in frozen solutions , 1993 .

[22]  D. Tribe,et al.  High productivity ethanol fermentations with Zymomonas mobilis , 1980 .

[23]  G. Sprenger Carbohydrate metabolism in Zymomonas mobilis: a catabolic highway with some scenic routes , 1996 .

[24]  R. Gennis,et al.  Epitopes of monoclonal antibodies which inhibit ubiquinol oxidase activity of Escherichia coli cytochrome d complex localize functional domain. , 1990, The Journal of biological chemistry.

[25]  A. Asakura,et al.  Cloning and nucleotide sequencing of the membrane-bound L-sorbosone dehydrogenase gene of Acetobacter liquefaciens IFO 12258 and its expression in Gluconobacter oxydans , 1995, Applied and environmental microbiology.

[26]  P. Zikmanis,et al.  An elevation of the molar growth yield of Zymomonas mobilis during aerobic exponential growth , 1997, Archives of Microbiology.

[27]  Y. Anraku,et al.  Resonance Raman study on axial ligands of heme irons in cytochrome bd-type ubiquinol oxidase from Escherichia coli , 1995 .

[28]  Effect of σS on σE-Directed Cell Lysis in Escherichia coli Early Stationary Phase , 2005, Journal of Molecular Microbiology and Biotechnology.

[29]  R. Gennis,et al.  The nucleotide sequence of the cyd locus encoding the two subunits of the cytochrome d terminal oxidase complex of Escherichia coli. , 1988, The Journal of biological chemistry.

[30]  R. Gennis,et al.  Methionine-393 is an axial ligand of the heme b558 component of the cytochrome bd ubiquinol oxidase from Escherichia coli. , 1995, Biochemistry.

[31]  T. Conway,et al.  Sequence and genetic organization of a Zymomonas mobilis gene cluster that encodes several enzymes of glucose metabolism , 1990, Journal of bacteriology.

[32]  R. Gennis,et al.  Location of heme axial ligands in the cytochrome d terminal oxidase complex of Escherichia coli determined by site-directed mutagenesis. , 1989, The Journal of biological chemistry.

[33]  C. Wills,et al.  Characterization of the two alcohol dehydrogenases of Zymomonas mobilis. , 1981, Archives of biochemistry and biophysics.

[34]  R. Poole,et al.  Oxygen Reactivity of Both Respiratory Oxidases in Campylobacter jejuni: the cydAB Genes Encode a Cyanide-Resistant, Low-Affinity Oxidase That Is Not of the Cytochrome bd Type , 2006, Journal of bacteriology.

[35]  L. Gustafsson,et al.  Characterization and fermentation of dilute-acid hydrolyzates from wood , 1997 .

[36]  P. Grieve,et al.  A simple technique for eliminating interference by detergents in the Lowry method of protein determination. , 1975, Analytical biochemistry.

[37]  R. Gennis,et al.  The haem b558 component of the cytochrome bd quinol oxidase complex from Escherichia coli has histidine-methionine axial ligation. , 1995, The Biochemical journal.