Zero thermal expansion in cubic MgZrF6
暂无分享,去创建一个
J. Deng | X. Xing | Jun Chen | Lei Hu | Yuzhu Song | Yongqiang Qiao | Jiale Xu | Fei Han
[1] Y. Sun,et al. Large Positive Thermal Expansion and Small Band Gap in Double-ReO3-Type Compound NaSbF6. , 2017, Inorganic chemistry.
[2] J. Deng,et al. Local structure and controllable thermal expansion in the solid solution (Mn1−xNix)ZrF6 , 2017 .
[3] S. Lapidus,et al. Composition, Response to Pressure, and Negative Thermal Expansion in MIIBIVF6 (M = Ca, Mg; B = Zr, Nb) , 2017 .
[4] J. Deng,et al. Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive Thermal Expansion in MZrF6 (M = Ca, Mn, Fe, Co, Ni, and Zn). , 2016, Journal of the American Chemical Society.
[5] X. Xing,et al. Lattice dynamics and anharmonicity of CaZrF6 from Raman spectroscopy and ab initio calculations , 2016 .
[6] Yezhou Yang,et al. Near‐Zero Thermal Expansion and High Ultraviolet Transparency in a Borate Crystal of Zn4B6O13 , 2016, Advanced materials.
[7] J. Deng,et al. New Insights into the Negative Thermal Expansion: Direct Experimental Evidence for the "Guitar-String" Effect in Cubic ScF3. , 2016, Journal of the American Chemical Society.
[8] K. Chapman,et al. Large Negative Thermal Expansion and Anomalous Behavior on Compression in Cubic ReO3-Type AIIBIVF6: CaZrF6 and CaHfF6 , 2015 .
[9] Muhammad Imran Malik,et al. Invar-like Behavior of Antiperovskite Mn3+xNi1–xN Compounds , 2015 .
[10] John S. O. Evans,et al. Systematic and controllable negative, zero, and positive thermal expansion in cubic Zr(1-x)Sn(x)Mo2O8. , 2013, Journal of the American Chemical Society.
[11] Zhonghua Sun,et al. Adjustable Zero Thermal Expansion in Antiperovskite Manganese Nitride , 2011, Advanced materials.
[12] Jacob L. Jones,et al. The role of spontaneous polarization in the negative thermal expansion of tetragonal PbTiO3-based compounds. , 2011, Journal of the American Chemical Society.
[13] J. Attfield,et al. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer , 2011, Nature communications.
[14] K. Chapman,et al. Pronounced negative thermal expansion from a simple structure: cubic ScF(3). , 2010, Journal of the American Chemical Society.
[15] C. Kepert,et al. Elucidating Negative Thermal Expansion in MOF-5 , 2010 .
[16] K. Chapman,et al. Zero thermal expansion in a flexible, stable framework: tetramethylammonium copper(I) zinc(II) cyanide. , 2010, Journal of the American Chemical Society.
[17] H. Takagi,et al. Zero thermal expansion in a pure-form antiperovskite manganese nitride , 2009 .
[18] K. Chapman,et al. Compositional dependence of negative thermal expansion in the Prussian Blue analogues M(II)Pt(IV)(CN)6 (M = Mn, Fe, Co, Ni, Cu, Zn, Cd). , 2006, Journal of the American Chemical Society.
[19] H. Takagi,et al. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides , 2005 .
[20] Kosmas Prassides,et al. Zero thermal expansion in a Prussian Blue analogue. , 2004, Journal of the American Chemical Society.
[21] A. Sleight. Materials science: Zero-expansion plan , 2003, Nature.
[22] A. Sleight,et al. Very low thermal expansion in TaO2F , 2003 .
[23] P. Mohn. Materials science: A century of zero expansion , 1999, Nature.
[24] John S. O. Evans,et al. Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8 , 1996, Science.