Zero thermal expansion in cubic MgZrF6

[1]  Y. Sun,et al.  Large Positive Thermal Expansion and Small Band Gap in Double-ReO3-Type Compound NaSbF6. , 2017, Inorganic chemistry.

[2]  J. Deng,et al.  Local structure and controllable thermal expansion in the solid solution (Mn1−xNix)ZrF6 , 2017 .

[3]  S. Lapidus,et al.  Composition, Response to Pressure, and Negative Thermal Expansion in MIIBIVF6 (M = Ca, Mg; B = Zr, Nb) , 2017 .

[4]  J. Deng,et al.  Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive Thermal Expansion in MZrF6 (M = Ca, Mn, Fe, Co, Ni, and Zn). , 2016, Journal of the American Chemical Society.

[5]  X. Xing,et al.  Lattice dynamics and anharmonicity of CaZrF6 from Raman spectroscopy and ab initio calculations , 2016 .

[6]  Yezhou Yang,et al.  Near‐Zero Thermal Expansion and High Ultraviolet Transparency in a Borate Crystal of Zn4B6O13 , 2016, Advanced materials.

[7]  J. Deng,et al.  New Insights into the Negative Thermal Expansion: Direct Experimental Evidence for the "Guitar-String" Effect in Cubic ScF3. , 2016, Journal of the American Chemical Society.

[8]  K. Chapman,et al.  Large Negative Thermal Expansion and Anomalous Behavior on Compression in Cubic ReO3-Type AIIBIVF6: CaZrF6 and CaHfF6 , 2015 .

[9]  Muhammad Imran Malik,et al.  Invar-like Behavior of Antiperovskite Mn3+xNi1–xN Compounds , 2015 .

[10]  John S. O. Evans,et al.  Systematic and controllable negative, zero, and positive thermal expansion in cubic Zr(1-x)Sn(x)Mo2O8. , 2013, Journal of the American Chemical Society.

[11]  Zhonghua Sun,et al.  Adjustable Zero Thermal Expansion in Antiperovskite Manganese Nitride , 2011, Advanced materials.

[12]  Jacob L. Jones,et al.  The role of spontaneous polarization in the negative thermal expansion of tetragonal PbTiO3-based compounds. , 2011, Journal of the American Chemical Society.

[13]  J. Attfield,et al.  Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer , 2011, Nature communications.

[14]  K. Chapman,et al.  Pronounced negative thermal expansion from a simple structure: cubic ScF(3). , 2010, Journal of the American Chemical Society.

[15]  C. Kepert,et al.  Elucidating Negative Thermal Expansion in MOF-5 , 2010 .

[16]  K. Chapman,et al.  Zero thermal expansion in a flexible, stable framework: tetramethylammonium copper(I) zinc(II) cyanide. , 2010, Journal of the American Chemical Society.

[17]  H. Takagi,et al.  Zero thermal expansion in a pure-form antiperovskite manganese nitride , 2009 .

[18]  K. Chapman,et al.  Compositional dependence of negative thermal expansion in the Prussian Blue analogues M(II)Pt(IV)(CN)6 (M = Mn, Fe, Co, Ni, Cu, Zn, Cd). , 2006, Journal of the American Chemical Society.

[19]  H. Takagi,et al.  Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides , 2005 .

[20]  Kosmas Prassides,et al.  Zero thermal expansion in a Prussian Blue analogue. , 2004, Journal of the American Chemical Society.

[21]  A. Sleight Materials science: Zero-expansion plan , 2003, Nature.

[22]  A. Sleight,et al.  Very low thermal expansion in TaO2F , 2003 .

[23]  P. Mohn Materials science: A century of zero expansion , 1999, Nature.

[24]  John S. O. Evans,et al.  Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8 , 1996, Science.