Multicommodity flows over time: Efficient algorithms and complexity
暂无分享,去创建一个
Martin Skutella | Alexander Hall | Steffen Hippler | M. Skutella | Alexander Hall | S. Hippler | Alexander Hall
[1] Rainer E. Burkard,et al. The quickest flow problem , 1993, ZOR Methods Model. Oper. Res..
[2] D. R. Fulkerson,et al. Constructing Maximal Dynamic Flows from Static Flows , 1958 .
[3] Martin Skutella,et al. Minimum cost flows over time without intermediate storage , 2003, SODA '03.
[4] Éva Tardos,et al. Efficient continuous-time dynamic network flow algorithms , 1998, Oper. Res. Lett..
[5] Klaus Jansen,et al. Call scheduling in trees, rings and meshes , 1997, Proceedings of the Thirtieth Hawaii International Conference on System Sciences.
[6] Éva Tardos,et al. “The quickest transshipment problem” , 1995, SODA '95.
[7] Jay E. Aronson,et al. A survey of dynamic network flows , 1989 .
[8] Shmuel Zaks,et al. Scheduling in Synchronous Networks and the Greedy Algorithm , 1999, Theor. Comput. Sci..
[9] Robert E. Tarjan,et al. A Fast Parametric Maximum Flow Algorithm and Applications , 1989, SIAM J. Comput..
[10] Nimrod Megiddo,et al. Combinatorial optimization with rational objective functions , 1978, Math. Oper. Res..
[11] Gerhard J. Woeginger,et al. Minimum-cost dynamic flows: The series-parallel case , 2004, Networks.
[12] Martin Skutella,et al. The Quickest Multicommodity Flow Problem , 2002, IPCO.
[13] David Gale,et al. Transient flows in networks. , 1959 .
[14] Bruce Hoppe,et al. Efficient Dynamic Network Flow Algorithms , 1995 .
[15] Warren B. Powell,et al. Stochastic and dynamic networks and routing , 1995 .