Glass composite waste forms for iodine confined in bismuth-embedded SBA-15

[1]  E. Maddrell,et al.  Capture of iodine from the vapour phase and immobilisation as sodalite , 2015 .

[2]  M. Yim,et al.  Bismuth-embedded SBA-15 mesoporous silica for radioactive iodine capture and stable storage , 2015 .

[3]  Man-Sung Yim,et al.  Novel synthesis of bismuth-based adsorbents for the removal of 129I in off-gas , 2015 .

[4]  Mark A. Rodriguez,et al.  SILVER-MORDENITE FOR RADIOLOGIC GAS CAPTURE FROM COMPLEX STREAMS: DUAL CATALYTIC CH3I DECOMPOSITION AND I CONFINEMENT. , 2014 .

[5]  J. Crum,et al.  Iodine solubility in a low-activity waste borosilicate glass at 1000 °C , 2014 .

[6]  M. Stennett,et al.  The durability of iodide sodalite , 2014 .

[7]  John D. Vienna,et al.  Current Understanding and Remaining Challenges in Modeling Long‐Term Degradation of Borosilicate Nuclear Waste Glasses , 2013 .

[8]  T. Garn,et al.  Radioactive Iodine and Krypton Control for Nuclear Fuel Reprocessing Facilities , 2013 .

[9]  K. Mueller,et al.  An international initiative on long-term behavior of high-level nuclear waste glass , 2013 .

[10]  A. Vengosh,et al.  Groundwater quality and its health impact: An assessment of dental fluorosis in rural inhabitants of the Main Ethiopian Rift. , 2012, Environment international.

[11]  Jing Cao,et al.  Low temperature synthesis of novel rodlike Bi5O7I with visible light photocatalytic performance , 2012 .

[12]  John D. Vienna,et al.  Tellurite glass as a waste form for mixed alkali-chloride waste streams: Candidate materials selection and initial testing , 2012 .

[13]  Dorina F. Sava,et al.  Iodine Confinement into Metal–Organic Frameworks (MOFs): Low-Temperature Sintering Glasses To Form Novel Glass Composite Material (GCM) Alternative Waste Forms , 2012 .

[14]  T. Peng,et al.  Synthesis of highly symmetrical BiOI single-crystal nanosheets and their {001} facet-dependent photoactivity , 2011 .

[15]  James L. Krumhansl,et al.  Low‐Temperature Sintering Bi–Si–Zn‐Oxide Glasses for Use in Either Glass Composite Materials or Core/Shell 129I Waste Forms , 2011 .

[16]  T. Nenoff,et al.  Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation. , 2010, Journal of the American Chemical Society.

[17]  James L. Krumhansl,et al.  Hydrotalcite-like layered bismuth–iodine–oxides as waste forms , 2010 .

[18]  Y. Grin,et al.  Spark plasma sintering of iodine-bearing apatite , 2010 .

[19]  M. I. Ojovan,et al.  Immobilisation of radioactive waste in glasses, glass composite materials and ceramics , 2006 .

[20]  G. Stucky,et al.  Direct syntheses of ordered SBA-15 mesoporous materials containing arenesulfonic acid groups , 2002 .

[21]  Plasma-Atomic Emission Spectrometry Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT) 1 , 2002 .

[22]  W. Langsteger,et al.  Epidemiology of thyroid diseases in iodine sufficiency. , 1998, Thyroid : official journal of the American Thyroid Association.

[23]  G. Eichholz,et al.  Treatment of gaseous effluents at nuclear facilities , 1991 .

[24]  D. O. Campbell,et al.  The Chemical Behavior of Fission Product Iodine in Light Water Reactor Accidents , 1981 .