Uncertainty Propagation for Systems of Conservation Laws, High Order Stochastic Spectral Methods
暂无分享,去创建一个
[1] Rémi Abgrall. A simple, flexible and generic deterministic approach to uncertainty quantifications in non linear problems: application to fluid flow problems , 2008 .
[2] R. Ghanem,et al. Uncertainty propagation using Wiener-Haar expansions , 2004 .
[3] Habib N. Najm,et al. Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..
[4] L. Mead,et al. Maximum entropy in the problem of moments , 1984 .
[5] Bruno Després,et al. Uncertainty quantification for systems of conservation laws , 2009, J. Comput. Phys..
[6] Guang Lin,et al. Predicting shock dynamics in the presence of uncertainties , 2006, J. Comput. Phys..
[7] G. Karniadakis,et al. Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..
[8] Michael Junk,et al. MAXIMUM ENTROPY FOR REDUCED MOMENT PROBLEMS , 2000 .
[9] George E. Karniadakis,et al. Beyond Wiener–Askey Expansions: Handling Arbitrary PDFs , 2006, J. Sci. Comput..
[10] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[11] R. Ghanem,et al. Multi-resolution analysis of wiener-type uncertainty propagation schemes , 2004 .
[12] Dongbin Xiu,et al. Discontinuity detection in multivariate space for stochastic simulations , 2009, J. Comput. Phys..
[13] W. T. Martin,et al. The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .