Update on the pathophysiology of the epilepsies

The pathophysiology of convulsive and non-convulsive epilepsies is discussed in its primary generalised forms. Focal, clinical and experimental epilepsies, with emphasis placed on the temporal lobe epilepsies (TLE) and their pathophysiologies are also reviewed. Neurotransmitters and neuromodulators and between them, the second messenger systems are considered in the generation, maintenance or inhibition of the epileptic discharge. Action mechanisms of the more classic antiepileptic drugs are briefly summarized along with the therapeutic strategies that might achieve the final control of abnormal discharges, including genetic control as a promising alternative in the current state of research. We emphasized the study of all type of glutamate and GABA receptors and their relation with mRNA editing in the brain. Some of the genetic studies which have been so fruitful during the last ten years and which have brought new insights regarding the understanding of epileptic syndromes are summarized in this article.

[1]  T. Dunwiddie,et al.  Adenosine increases synaptic facilitation in the in vitro rat hippocampus: evidence for a presynaptic site of action. , 1985, The Journal of physiology.

[2]  L. Olson,et al.  Electrophysiology and cytology of hippocampal formation transplants in the anterior chamber of the eye. II. Cholinergic mechanisms , 1977, Brain Research.

[3]  I. Scheffer,et al.  Localization of a gene for autosomal dominant nocturnal frontal lobe epilepsy to chromosome 20q13.2 , 1995, Nature Genetics.

[4]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[5]  J. Richardson,et al.  Brain norepinephrine, dopamine, and 5-hydroxytryptamine concentration abnormalities and their role in the high seizure susceptibility of epileptic chickens. , 1981, Canadian journal of physiology and pharmacology.

[6]  I. Verma,et al.  Induction of proto-oncogene JUN/AP-1 by serum and TPA , 1988, Nature.

[7]  T. Babb,et al.  Synaptic reorganization by mossy fibers in human epileptic fascia dentata , 1991, Neuroscience.

[8]  Massimo Avoli,et al.  Generalized Epilepsy: Neurobiological Approaches , 1990 .

[9]  J. Engel Update on surgical treatment of the epilepsies , 1993, Neurology.

[10]  A. Depaulis,et al.  Potentiation of γ-vinyl GABA (vigabatrin) effects by glycine , 1990 .

[11]  Blaise F. D. Bourgeois,et al.  Pediatric Epilepsy: Diagnosis and Therapy , 1993 .

[12]  Delorenzo Rj A molecular approach to the calcium signal in brain: relationship to synaptic modulation and seizure discharge. , 1986 .

[13]  A. Draguhn,et al.  Strategies for the Development of Drugs for Pharmacoresistant Epilepsies , 1994, Epilepsia.

[14]  A. Escueta,et al.  The freezing lesion. II. Potassium transport within nerve terminals isolated from epileptogenic foci. , 1974, Brain research.

[15]  C. Marsden,et al.  Autosomal dominant nocturnal frontal-lobe epilepsy: genetic heterogeneity and evidence for a second locus at 15q24. , 1998, American journal of human genetics.

[16]  M. Dichter,et al.  Mechanisms of epileptogenesis : the transition to seizure , 1988 .

[17]  P. Strange,et al.  Inhibition of inositol phospholipid breakdown by D2 dopamine receptors in dissociated bovine anterior pituitary cells , 1985, Neuroscience Letters.

[18]  O. Snead,et al.  Basic mechanisms of generalized absence seizures , 1995, Annals of neurology.

[19]  B. Waterhouse Electrophysiological assessment of monoamine synaptic function in neuronal circuits of seizure susceptible brains. , 1986, Life sciences.

[20]  I. Scheffer,et al.  Familial partial epilepsy with variable foci: A new partial epilepsy syndrome with suggestion of linkage to chromosome 2 , 1998, Annals of neurology.

[21]  J. McNamara,et al.  Biochemical evidence of decreased muscarinic cholinergic neuronal communication following amygdala-kindled seizures , 1981, Brain Research.

[22]  D. Prince,et al.  Dopamine action on hippocampal pyramidal cells , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  F. Bergmann,et al.  A LOW THRESHOLD CONVULSIVE AREA IN THE RABBIT'S MESENCEPHALON. , 1963, Electroencephalography and clinical neurophysiology.

[24]  J. Prud'homme,et al.  Autosomal dominant lateral temporal epilepsy: Clinical and genetic study of a large basque pedigree linked to chromosome 10q , 1999, Annals of neurology.

[25]  E. Crighel,et al.  CHANGES IN THE ACTIVITY OF SOME ENZYMIC SYSTEMS DETERMINED IN THE CORTICAL SCAR AND AT THE LEVEL OF SECONDARY DEGENERATIVE LESIONS , 1962 .

[26]  J. Holaday,et al.  Opiate-like effects of electroconvulsive shock in rats: a differential effect of naloxone on nociceptive measures. , 1980, Life sciences.

[27]  S. Moshé,et al.  Nigral infusions of muscimol or bicuculline facilitate seizures in developing rats. , 1987, Brain research.

[28]  S. Daniels-McQueen,et al.  Comparative actions of phenytoin and other anticonvulsant drugs on potassium- and veratridine-stimulated calcium uptake in synaptosomes. , 1982, The Journal of pharmacology and experimental therapeutics.

[29]  M. During,et al.  Adenosine: A potential mediator of seizure arrest and postictal refractoriness , 1992, Annals of neurology.

[30]  D. Hasboun,et al.  Is Interictal Temporal Hypometabolism Related to Mesial Temporal Sclerosis? A Positron Emission Tomography/Magnetic Resonance Imaging Confrontation , 1995, Epilepsia.

[31]  F. Dudek,et al.  Osmolality and nonsynaptic epileptiform bursts in rat CA1 and dentate gyrus , 1992, Annals of neurology.

[32]  G. Sedvall,et al.  IN-VIVO DEMONSTRATION OF REDUCED BENZODIAZEPINE RECEPTOR BINDING IN HUMAN EPILEPTIC FOCI , 1988, The Lancet.

[33]  H. Frenk,et al.  Morphine and enkephalin: analgesic and epileptic properties. , 1977, Science.

[34]  T. Blackburn,et al.  Pharmacology of mammalian GABA-A receptors , 1997 .

[35]  O. Rd Opiate-induced seizures: a study of mu and delta specific mechanisms. , 1986 .

[36]  D. Spencer,et al.  Regional Distributions of Hippocampal Na+, K+‐ATPase, Cytochrome Oxidase, and Total Protein in Temporal Lobe Epilepsy , 1995, Epilepsia.

[37]  J. Louvel,et al.  Ionic changes induced by excitatory amino acids in the rat cerebral cortex. , 1987, Canadian journal of physiology and pharmacology.

[38]  M. Dichter Emerging Insights Into Mechanisms of Epilepsy: Implications for New Antiepileptic Drug Development , 1994, Epilepsia.

[39]  A. Olivier,et al.  α‐1 Adrenoceptors are decreased in human epileptic foci , 1986, Annals of neurology.

[40]  J Gotman,et al.  An analysis of penicillin-induced generalized spike and wave discharges using simultaneous recordings of cortical and thalamic single neurons. , 1983, Journal of neurophysiology.

[41]  K. Krnjević Role of Neurotransmitters in the Genesis of Epileptiform Discharges , 1990 .

[42]  H. Frenk,et al.  Epileptic properties of leucine- and methionine-enkephalin: Comparison with morphine and reversibility by naloxone , 1978, Brain Research.

[43]  M. Huntsman,et al.  BDNF mRNA expression is increased in adult rat forebrain after limbic seizures: Temporal patterns of induction distinct from NGF , 1991, Neuron.

[44]  G F Ayala,et al.  Genesis of epileptic interictal spikes. New knowledge of cortical feedback systems suggests a neurophysiological explanation of brief paroxysms. , 1973, Brain research.

[45]  S. Berkovic,et al.  Suggestion of a major gene for familial febrile convulsions mapping to 8q13-21. , 1996, Journal of medical genetics.

[46]  J. Gotman,et al.  Excitatory amino acids are elevated in human epileptic cerebral cortex , 1988, Neurology.

[47]  I. Módy,et al.  Activation of N-methyl-D-aspartate receptors parallels changes in cellular and synaptic properties of dentate gyrus granule cells after kindling. , 1988, Journal of neurophysiology.

[48]  R. Nicoll,et al.  Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. , 1987, The Journal of physiology.

[49]  Frost Jj Imaging mu-opiate receptors in epilepsy by positron emission tomography. , 1989 .

[50]  J. Ferrendelli Roles of biogenic amines and cyclic nucleotides in seizure mechanisms , 1986, Advances in neurology.

[51]  S. Moshé,et al.  Substantia Nigra-Mediated Control of Generalized Seizures , 1990 .

[52]  R. Mckernan,et al.  Which GABAA-receptor subtypes really occur in the brain? , 1996, Trends in Neurosciences.

[53]  R. Post,et al.  Apoptosis of hippocampal neurons after amygdala kindled seizures. , 1998, Brain research. Molecular brain research.

[54]  A. Colino,et al.  Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin , 1987, Nature.

[55]  S Gilman,et al.  Altered excitatory and inhibitory amino acid receptor binding in hippocampus of patients with temporal lobe epilepsy , 1991, Annals of neurology.

[56]  D. Choi,et al.  Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. , 1987, Science.

[57]  J H Chin,et al.  Adenosine receptors in brain: Neuromodulation and role in epilepsy , 1989, Annals of neurology.

[58]  S. Enna The GABA receptors , 1997 .

[59]  E. Trams,et al.  DEFICIENCY OF A Ca2+‐ATPase IN BRAINS OF SEIZURE PRONE MICE , 1976, Journal of neurochemistry.

[60]  S. Enna,et al.  Biochemical and electrophysiological characteristics of mammalian GABA receptors. , 1983, International review of neurobiology.

[61]  J. Barker,et al.  Pentylenetetrazol and penicillin are selective antagonists of GABA-mediated post-synaptic inhibition in cultured mammalian neurones , 1977, Nature.

[62]  Y. Nishizuka,et al.  Phosphatidylinositol turnover in receptor mechanism and signal transduction. , 1985, Annual review of pharmacology and toxicology.

[63]  B. Meldrum,et al.  Acute anticonvulsant activity of structural analogues of valproic acid and changes in brain GABA and aspartate content. , 1983, Life sciences.

[64]  M. Spence,et al.  Confirmation of linkage between juvenile myoclonic epilepsy locus and the HLA region of chromosome 6. , 1991, American journal of medical genetics.

[65]  D. Purpura,et al.  AMINO ACID METABOLISM IN EPILEFTOGENIC AND NON‐EPILEPTOGENIC LESIONS OF THE NEOCORTEX (CAT) , 1959, Journal of neurochemistry.

[66]  C. Wadelius,et al.  Centrotemporal spikes in families with rolandic epilepsy , 1998, Neurology.

[67]  D. Prince The depolarization shift in "epileptic" neurons. , 1968, Experimental neurology.

[68]  K. Gale,et al.  Role of excitatory amino acid transmission in the genesis of seizures elicited from the deep prepiriform cortex , 1986, Brain Research.

[69]  P. Morselli Neurotransmitters, seizures, and epilepsy , 1981 .

[70]  J. McNamara,et al.  Repeated seizures induce long-term increase in hippocampal benzodiazepine receptors. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[71]  H. Pasantes‐Morales,et al.  The role of taurine in nervous tissue: its effects on ionic fluxes. , 1981, Advances in experimental medicine and biology.

[72]  G. V. Goddard,et al.  Is Adenosine an Endogenous Anticonvulsant? , 1985, Epilepsia.

[73]  T. Rasmussen,et al.  Amino acid content of epileptogenic human brain: focal versus surrounding regions. , 1972, Brain research.

[74]  O. Snead Evidence for GABAB-mediated mechanisms in experimental generalized absence seizures. , 1992, European journal of pharmacology.

[75]  Babb Tl Synaptic reorganizations in human and rat hippocampal epilepsy. , 1999 .

[76]  A. Coenen,et al.  Role of L‐Type Calcium Channel Modulation in Nonconvulsive Epilepsy in Rats , 1995, Epilepsia.

[77]  T. Curran,et al.  Mapping patterns of c-fos expression in the central nervous system after seizure. , 1987, Science.

[78]  P. Gloor Epilepsy: Relationships Between Electrophysiology and Intracellular Mechanisms Involving Second Messengers and Gene Expression , 1989, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[79]  Alan A. Wilson,et al.  Quantification of mu and non–mu opiate receptors in temporal lobe epilepsy using positron emission tomography , 1991, Annals of neurology.

[80]  L. Kopeloff,et al.  Metrazol seizures in rats: effect of p-chlorophenylalanine. , 1970, Brain research.

[81]  G. Glaser,et al.  Antiepileptic drugs : mechanisms of action , 1980 .

[82]  C. Jiménez-Rivera,et al.  Effect of locus ceruleus stimulation on the development of kindled seizures , 1987, Experimental Neurology.

[83]  M. Segal Developmental changes in serotonin actions in rat hippocampus. , 1990, Brain research. Developmental brain research.

[84]  D. B. Tower Nature and Extent of the Biochemical Lesion in Human Epileptogenic Cerebral Cortex , 1955, Neurology.

[85]  R. Mutani,et al.  Free Amino Acids in the Cerebrospinal Fluid of Epileptic Subjects , 1974, Epilepsia.

[86]  T. Perry,et al.  Amino acid abnormalities in epileptogenic foci , 1981, Neurology.

[87]  J. Engel,et al.  Endogenous opiods may mediate post-ictal behavioral depression in amygdaloid-kindled rats , 1979, Brain Research.

[88]  Browning Ra,et al.  Role of the brain-stem reticular formation in tonic-clonic seizures: lesion and pharmacological studies. , 1985 .

[89]  R. Nicoll,et al.  A physiological role for GABAB receptors in the central nervous system , 1988, Nature.

[90]  J. Barker,et al.  Diazepam and (--)-pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of gamma-aminobutyric acid responses in cultured central neurons. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[91]  F. Dubeau,et al.  Increased activity of choline acetyltransferase and acetylcholinesterase in actively epileptic human cerebral cortex , 1988, Epilepsy Research.

[92]  R. Dingledine,et al.  Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. , 1988, Journal of neurophysiology.

[93]  B. Meldrum,et al.  Excitant Amino Acids in Epilepsy , 1990 .

[94]  T. Dunwiddie,et al.  Sedative and anticonvulsant effects of adenosine analogs in mouse and rat. , 1982, The Journal of pharmacology and experimental therapeutics.

[95]  J. McNamara,et al.  Autoantibodies to glutamate receptor GluR3 in Rasmussen's encephalitis. , 1994, Science.

[96]  P. Mandel,et al.  Protective effect of adenosine and nicotinamide against audiogenic seizure. , 1974, Biochemical pharmacology.

[97]  A. Barbeau,et al.  Zinc, taurine, and epilepsy. , 1974, Archives of neurology.

[98]  F. Bloom,et al.  beta-Endorphin induces nonconvulsive limbic seizures. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Increased γ-hydroxybutyric acid receptors in thalamus of a genetic animal model of petit mal epilepsy , 1990, Epilepsy Research.

[100]  J. Eccles,et al.  Prolongation of hippocampal inhibitory postsynaptic potentials by barbiturates , 1975, Nature.

[101]  S. Kish,et al.  Aspartic acid aminotransferase activity is increased in actively spiking compared with non-spiking human epileptic cortex. , 1988, Journal of neurology, neurosurgery, and psychiatry.

[102]  A. Thomson,et al.  Glycine enhances NMDA-receptor mediated synaptic potentials in neocortical slices , 1989, Nature.

[103]  Glutamate receptor channels: a possible link between RNA editing in the brain and epilepsy. , 1999, Advances in neurology.

[104]  John W. Miller,et al.  Some Subcortical Mechanisms Involved in Experimental Generalized Seizures , 1988 .

[105]  J. Barker,et al.  (-)Pentobarbital opens ion channels of long duration in cultured mouse spinal neurons. , 1980, Science.

[106]  S. T. Mason,et al.  Role of forebrain catecholamines in amygdaloid kindling , 1980, Brain Research.

[107]  H. Frenk,et al.  Systemic morphine blocks the seizures induced by intracerebroventricular (i.c.v.) injections of opiates and opioid peptides , 1982, Brain Research.

[108]  K. Gale Animal Models of Generalized Convulsive Seizures: Some Neuroanatomical Differentiation of Seizure Types , 1990 .

[109]  Erratum: Physiologic and morphologic characteristics of granule cell circuitry in human epileptic hippocampus (Epilepsia (1995) 36 (543-558)) , 1995 .

[110]  J. E. Franck,et al.  Physiologic and Morphologic Characteristics of Granule Cell Circuitry in Human Epileptic Hippocampus , 1995, Epilepsia.

[111]  I. Scheffer,et al.  A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy , 1995, Nature Genetics.

[112]  A. Williamson,et al.  Decrease in inhibition in dentate granule cells from patients with medial temporal lobe epilepsy , 1999, Annals of neurology.

[113]  J. Weber,et al.  Evidence for a novel gene for familial febrile convulsions, FEB2, linked to chromosome 19p in an extended family from the Midwest. , 1998, Human molecular genetics.

[114]  Antoine Depaulis,et al.  Mapping of spontaneous spike and wave discharges in Wistar rats with genetic generalized non-convulsive epilepsy , 1990, Brain Research.

[115]  A. Scheibel,et al.  The Hippocampal‐Dentate Complex in Temporal Lobe Epilepsy , 1974, Epilepsia.

[116]  J. Engel,et al.  Update on surgical treatment of the epilepsies. , 1992, Clinical and experimental neurology.

[117]  R. S. Sloviter,et al.  The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy , 1994, Annals of neurology.

[118]  N. Baumann,et al.  Anticonvulsant effect of yohimbine in quaking mice: antagonism by clonidine and prazosine. , 1979, Life sciences.

[119]  J. E. Vaughn,et al.  Inhibitory, GABAergic nerve terminals decrease at sites of focal epilepsy. , 1979, Science.

[120]  D. R. Curtis,et al.  Amino acid transmitters in the mammalian central nervous system. , 1974, Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie.

[121]  M Kokaia,et al.  Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[122]  M. Avoli GABAergic Mechanisms and Epileptic Discharges , 1988 .

[123]  D. McCormick,et al.  Cellular mechanisms of a synchronized oscillation in the thalamus. , 1993, Science.

[124]  C. Cotman,et al.  Altered distribution of excitatory amino acid receptors in temporal lobe epilepsy , 1990, Experimental Neurology.

[125]  O. Devinsky,et al.  Cerebrospinal Fluid and Serum Levels of DOPA, Catechols, and Monoamine Metabolites in Patients with Epilepsy , 1992, Epilepsia.

[126]  I Savic,et al.  In vivo demonstration of altered benzodiazepine receptor density in patients with generalised epilepsy. , 1994, Journal of neurology, neurosurgery, and psychiatry.

[127]  J. Folch-Pi Chemical Pathology of the Nervous System , 1962 .

[128]  Dirk Feldmeyer,et al.  Early-Onset Epilepsy and Postnatal Lethality Associated with an Editing-Deficient GluR-B Allele in Mice , 1995, Science.

[129]  A. Rougier,et al.  Quinolinic‐Phosphoribosyl Transferase Activity is Decreased in Epileptic Human Brain Tissue , 1988, Epilepsia.

[130]  R. Dingledine,et al.  Reduced inhibition during epileptiform activity in the in vitro hippocampal slice. , 1980, The Journal of physiology.

[131]  M. Kilian,et al.  Central monoamines and convulsine thresholds in mice and rats. , 1973, Neuropharmacology.

[132]  J. Villemure,et al.  Excitatory Amino Acids Modulate Phosphoinositide Signal Transduction in Human Epileptic Neocortex , 1992, Epilepsia.

[133]  K. Gale GABA in Epilepsy: The Pharmacologic Basis , 1989, Epilepsia.

[134]  A. Stelzer,et al.  Inositol 1-phosphate formation in long-term potentiation and kindling , 1989, Brain Research.

[135]  N. Baumann,et al.  Modulation of α1- and α2-adrenoceptor binding sites in the brain of audiogenic seizure susceptible mice (DBA/2J) , 1985 .

[136]  E. Hoff,et al.  The actions of nicotine on central nervous system functions. , 1962, Pharmacological reviews.

[137]  D. Farber,et al.  Kindling induces a long-lasting change in the activity of a hippocampal membrane calmodulin-dependent protein kinase system , 1986, Brain Research.

[138]  D. Curtis,et al.  Genetic mapping of a major susceptibility locus for juvenile myoclonic epilepsy on chromosome 15q. , 1997, Human molecular genetics.