Measurement of bacterial replication rates in microbial communities

[1]  E. Edwards,et al.  Cultivating microbial dark matter in benzene-degrading methanogenic consortia. , 2016, Environmental microbiology.

[2]  B. Baker,et al.  Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction , 2016, The ISME Journal.

[3]  Brian C. Thomas,et al.  A new view of the tree of life , 2016, Nature Microbiology.

[4]  N. Fierer,et al.  Relic DNA is abundant in soil and obscures estimates of soil microbial diversity , 2016, Nature Microbiology.

[5]  Blake A. Simmons,et al.  MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets , 2016, Bioinform..

[6]  Christine L. Sun,et al.  Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems , 2016, Nature Communications.

[7]  Alexander J. Probst,et al.  Analysis of five complete genome sequences for members of the class Peribacteria in the recently recognized Peregrinibacteria bacterial phylum , 2016, PeerJ.

[8]  Amrita Pati,et al.  Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs , 2016, Nature Communications.

[9]  Brian D. Ondov,et al.  Mash: fast genome and metagenome distance estimation using MinHash , 2015, Genome Biology.

[10]  D. Newman,et al.  Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum , 2015, Proceedings of the National Academy of Sciences.

[11]  Eran Segal,et al.  Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples , 2015, Science.

[12]  James C. Stegen,et al.  The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle , 2015, Front. Microbiol..

[13]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[14]  Brian C. Thomas,et al.  Unusual biology across a group comprising more than 15% of domain Bacteria , 2015, Nature.

[15]  Kenneth H. Williams,et al.  Genomic Expansion of Domain Archaea Highlights Roles for Organisms from New Phyla in Anaerobic Carbon Cycling , 2015, Current Biology.

[16]  Brian C. Thomas,et al.  Diverse uncultivated ultra-small bacterial cells in groundwater , 2015, Nature Communications.

[17]  Brian C. Thomas,et al.  Accurate, multi-kb reads resolve complex populations and detect rare microorganisms , 2015, Genome research.

[18]  Brian C. Thomas,et al.  Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development , 2015, eLife.

[19]  S. Yooseph,et al.  Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle , 2014, Proceedings of the National Academy of Sciences.

[20]  M. Newville,et al.  Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python , 2014 .

[21]  Anders F. Andersson,et al.  Binning metagenomic contigs by coverage and composition , 2014, Nature Methods.

[22]  J. Sandy,et al.  Axenic Culture of a Candidate Division TM7 Bacterium from the Human Oral Cavity and Biofilm Interactions with Other Oral Bacteria , 2014, Applied and Environmental Microbiology.

[23]  Jens Roat Kultima,et al.  Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes , 2014, Nature Biotechnology.

[24]  A. Warren,et al.  "Candidatus Sonnebornia yantaiensis", a member of candidate division OD1, as intracellular bacteria of the ciliated protist Paramecium bursaria (Ciliophora, Oligohymenophorea). , 2014, Systematic and applied microbiology.

[25]  Brian C. Thomas,et al.  Small Genomes and Sparse Metabolisms of Sediment-Associated Bacteria from Four Candidate Phyla , 2013, mBio.

[26]  Kenneth H. Williams,et al.  Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment , 2013, Nature Communications.

[27]  Brian C. Thomas,et al.  The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria , 2013, eLife.

[28]  Natalia N. Ivanova,et al.  Insights into the phylogeny and coding potential of microbial dark matter , 2013, Nature.

[29]  P. Hugenholtz,et al.  Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes , 2013, Nature Biotechnology.

[30]  Feng Gao,et al.  DoriC 5.0: an updated database of oriC regions in both bacterial and archaeal genomes , 2012, Nucleic Acids Res..

[31]  Brian C. Thomas,et al.  Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization , 2013, Genome research.

[32]  N. Lennon,et al.  Characterizing and measuring bias in sequence data , 2013, Genome Biology.

[33]  Brian C. Thomas,et al.  Fermentation, Hydrogen, and Sulfur Metabolism in Multiple Uncultivated Bacterial Phyla , 2012, Science.

[34]  Wolfgang Wiechert,et al.  Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms , 2012, Microbial Cell Factories.

[35]  Siu-Ming Yiu,et al.  IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth , 2012, Bioinform..

[36]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[37]  R. Morris,et al.  Untangling Genomes from Metagenomes: Revealing an Uncultured Class of Marine Euryarchaeota , 2012, Science.

[38]  N. Tommerup,et al.  Genome-wide detection of chromosomal rearrangements, indels, and mutations in circular chromosomes by short read sequencing. , 2011, Genome research.

[39]  Doug Hyatt,et al.  Enigmatic, ultrasmall, uncultivated Archaea , 2010, Proceedings of the National Academy of Sciences.

[40]  Eduardo P. C. Rocha,et al.  The Systemic Imprint of Growth and Its Uses in Ecological (Meta)Genomics , 2010, PLoS genetics.

[41]  R. Rosselló-Móra,et al.  Shifting the genomic gold standard for the prokaryotic species definition , 2009, Proceedings of the National Academy of Sciences.

[42]  Brian C. Thomas,et al.  Community-wide analysis of microbial genome sequence signatures , 2009, Genome Biology.

[43]  Aaron E. Darling,et al.  Reordering contigs of draft genomes using the Mauve Aligner , 2009, Bioinform..

[44]  Mikhail S. Gelfand,et al.  Identification of replication origins in prokaryotic genomes , 2008, Briefings Bioinform..

[45]  Karsten Zengler,et al.  Targeted Access to the Genomes of Low-Abundance Organisms in Complex Microbial Communities , 2007, Applied and Environmental Microbiology.

[46]  P. Bork,et al.  Prediction of effective genome size in metagenomic samples , 2007, Genome Biology.

[47]  J. Banfield,et al.  Community structure and metabolism through reconstruction of microbial genomes from the environment , 2004, Nature.

[48]  A Grigoriev,et al.  Analyzing genomes with cumulative skew diagrams. , 1998, Nucleic acids research.

[49]  J. Lobry Asymmetric substitution patterns in the two DNA strands of bacteria. , 1996, Molecular biology and evolution.

[50]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[51]  G. Churchward,et al.  An examination of the Cooper-Helmstetter theory of DNA replication in bacteria and its underlying assumptions. , 1977, Journal of theoretical biology.

[52]  D. Prescott,et al.  Bidirectional replication of the chromosome in Escherichia coli. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[53]  R. Wake Visualization of reinitiated chromosomes in Bacillus subtilis. , 1972, Journal of molecular biology.

[54]  H. E. Kubitschek,et al.  Chromosome Replication and the Division Cycle of Escherichia coli B/r , 1971, Journal of bacteriology.