Matter-wave vortices and solitons in anisotropic optical lattices

Abstract Using numerical methods, we construct families of vortical, quadrupole, and fundamental solitons in a two-dimensional (2D) nonlinear-Schrodinger/Gross–Pitaevskii equation which models Bose–Einstein condensates (BECs) or photonic crystals. The equation includes the attractive or repulsive cubic nonlinearity and an anisotropic periodic potential. Two types of anisotropy are considered, accounted for by the difference in the strengths of the 1D sublattices, or by a difference in their periods. The limit case of the quasi-1D optical lattice (OL), when one sublattice is missing, is included too. By means of systematic simulations, we identify stability limits for two species of vortex solitons and quadrupoles, of the rhombus and square types. In the attraction model, rhombic vortices and quadrupoles remain stable up to the limit case of the quasi-1D lattice. In the same model, finite stability limits are found for vortices and quadrupoles of the square type, in terms of the anisotropy parameter. In the repulsion model, rhombic vortices and quadrupoles are stable in large parts of the first finite bandgap (FBG). Another species of partly stable anisotropic states is found in the second FBG, subfundamental dipoles, each squeezed into a single cell of the OL. Square-shaped quadrupoles are completely unstable in the repulsion model, while vortices of the same type are stable only in weakly anisotropic OL potentials.

[1]  Delocalizing transition of multidimensional solitons in Bose-Einstein condensates , 2003, cond-mat/0307283.

[2]  Zhao-Qing Zhang,et al.  Gap solitons and soliton trains in finite-sized two-dimensional periodic and quasiperiodic photonic crystals. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Reduced-symmetry two-dimensional solitons in photonic lattices. , 2005, Physical review letters.

[4]  M. Salerno,et al.  Regular spatial structures in arrays of Bose?Einstein condensates induced by modulational instability , 2002 .

[5]  Y. Kivshar,et al.  Generation and detection of matter-wave gap vortices in optical lattices , 2006 .

[6]  Mason A Porter,et al.  Nonlinear lattice dynamics of Bose-Einstein condensates. , 2005, Chaos.

[7]  T. Lakoba,et al.  Universally‐Convergent Squared‐Operator Iteration Methods for Solitary Waves in General Nonlinear Wave Equations , 2007, nlin/0702033.

[8]  V. Konotop,et al.  Nonlinear excitations in arrays of Bose-Einstein condensates , 2001, cond-mat/0106042.

[9]  Jianke Yang,et al.  Fundamental and vortex solitons in a two-dimensional optical lattice. , 2003, Optics letters.

[10]  Y. Kivshar,et al.  Matter-wave gap vortices in optical lattices , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[11]  B. A. Malomed,et al.  Multidimensional solitons in a low-dimensional periodic potential (9 pages) , 2004 .

[12]  B. Malomed,et al.  Cubic-quintic solitons in the checkerboard potential. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  B. Malomed,et al.  Multidimensional semi-gap solitons in a periodic potential , 2005, nlin/0511052.

[14]  B. Malomed,et al.  Three-dimensional vortex solitons in quasi-two-dimensional lattices. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  A R Bishop,et al.  Discrete solitons and vortices on anisotropic lattices. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  P. Kevrekidis,et al.  Observation of discrete solitons and soliton rotation in optically induced periodic ring lattices. , 2006, Physical review letters.

[17]  Keith Promislow,et al.  Localized breathing oscillations of Bose-Einstein condensates in periodic traps , 2001, cond-mat/0105600.

[18]  Randall G. Hulet,et al.  Bright matter wave solitons in Bose–Einstein condensates , 2003 .

[19]  B. Malomed,et al.  Tightly bound gap solitons in a Fermi gas , 2007, 0802.2002.

[20]  M. Oberthaler,et al.  Dynamics of Bose-Einstein condensates in optical lattices , 2006 .

[21]  Demetrios N. Christodoulides,et al.  Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices , 2003, Nature.

[22]  Zuoqiang Shi,et al.  Solitary waves bifurcated from Bloch-band edges in two-dimensional periodic media. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Demetrios N. Christodoulides,et al.  Lattice solitons in Bose-Einstein condensates , 2003 .

[24]  Boris A. Malomed,et al.  Spontaneous soliton symmetry breaking in two-dimensional coupled Bose-Einstein condensates supported by optical lattices , 2007, 0708.4028.

[25]  Dmitry E Pelinovsky,et al.  Bifurcations and stability of gap solitons in periodic potentials. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Albert Ferrando,et al.  Vortex solitons in photonic crystal fibers. , 2004, Optics express.

[27]  Mario Salerno,et al.  Matter-wave solitons in radially periodic potentials. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Y. Kivshar,et al.  Two-dimensional self-trapped nonlinear photonic lattices. , 2006, Optics express.

[29]  B Eiermann,et al.  Bright Bose-Einstein gap solitons of atoms with repulsive interaction. , 2004, Physical review letters.

[30]  Luc Bergé,et al.  Wave collapse in physics: principles and applications to light and plasma waves , 1998 .

[31]  Y. Kivshar,et al.  Observation of discrete vortex solitons in optically induced photonic lattices. , 2004, Physical review letters.

[32]  Mordechai Segev,et al.  Spatial photonics in nonlinear waveguide arrays. , 2005, Optics express.

[33]  M. Segev,et al.  Observation of vortex-ring "discrete" solitons in 2D photonic lattices , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[34]  Jianke Yang,et al.  Families of vortex solitons in periodic media , 2008, 0802.0285.

[35]  A. Klimov,et al.  The solitons redistribution in Bose–Einstein condensate in quasiperiodic optical lattice , 2007, 0704.3997.

[36]  B. Malomed,et al.  Stability limits for gap solitons in a Bose-Einstein condensate trapped in a time-modulated optical lattice , 2006 .

[37]  L. Torner,et al.  Stable three-dimensional spatiotemporal solitons in a two-dimensional photonic lattice. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  P. Kevrekidis,et al.  Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  M. Oberthaler,et al.  Stability of gap solitons in a Bose-Einstein condensate , 2002, cond-mat/0208136.

[40]  C. Wieman,et al.  Formation of bright matter-wave solitons during the collapse of attractive Bose-Einstein condensates. , 2006, Physical review letters.

[41]  V. Konotop,et al.  Matter solitons in Bose-Einstein condensates with optical lattices , 2002 .

[42]  Yuri S. Kivshar,et al.  Bose-Einstein condensates in optical lattices: Band-gap structure and solitons , 2003 .

[43]  Yuri Kivshar,et al.  Photonic crystals for matter waves: Bose-Einstein condensates in optical lattices. , 2004, Optics Express.

[44]  B. Malomed,et al.  Spatiotemporal optical solitons , 2005 .

[45]  B. Malomed,et al.  Higher-order vortex solitons, multipoles, and supervortices on a square optical lattice , 2005, cond-mat/0511216.

[46]  B. A. Malomed,et al.  Multidimensional solitons in periodic potentials , 2003 .

[47]  O. Zobay,et al.  Creation of gap solitons in Bose-Einstein condensates , 1998, cond-mat/9805228.

[48]  B. Malomed,et al.  Two-component gap solitons in two- and one-dimensional Bose-Einstein condensates (15 pages) , 2005, cond-mat/0512227.

[49]  Boris A. Malomed,et al.  POTENTIAL OF INTERACTION BETWEEN TWO- AND THREE-DIMENSIONAL SOLITONS , 1998, patt-sol/9809009.

[50]  Yuri S Kivshar,et al.  Asymmetric vortex solitons in nonlinear periodic lattices. , 2004, Physical review letters.

[51]  B. Malomed,et al.  Necklacelike solitons in optically induced photonic lattices. , 2005, Physical review letters.

[53]  Hidetsugu Sakaguchi,et al.  Two-dimensional loosely and tightly bound solitons in optical lattices and inverted traps , 2004 .

[54]  L. Salasnich,et al.  Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates , 2002 .

[55]  A Smerzi,et al.  Discrete solitons and breathers with dilute Bose-Einstein condensates. , 2001, Physical review letters.

[56]  C. Salomon,et al.  Formation of a Matter-Wave Bright Soliton , 2002, Science.

[57]  Randall G. Hulet,et al.  Formation and propagation of matter-wave soliton trains , 2002, Nature.

[58]  Albert Ferrando,et al.  Spatial soliton formation in photonic crystal fibers. , 2003, Optics express.