Magnetohydrodynamic theory of the global structure and magnetic components of the geodesic acoustic continuum modes in tokamaks

Ideal magnetohydrodynamic (MHD) theory is used to investigate some of the fundamental properties of the geodesic acoustic continuum modes (GAMs) in tokamaks, including their global structure, their associated magnetic components both inside and outside the plasma, and effects of a non-circular cross section of the plasma. In addition to the well-known m=1 side-bands in the perturbed density and pressure of the (electrostatic) GAM, the MHD continuum GAM also includes a m=1 side-band in the perturbed toroidal magnetic field as well as m=2 side-bands in the perturbed density, pressure, poloidal flow and in the magnetic components δBr and δBθ (m is the poloidal mode number). These m=2 side-bands exist within the whole plasma and the magnetic components also outside the plasma, and the magnitudes of these components in the vacuum region are calculated in the paper. It is shown that, for plasmas with a conducting wall not too far from the plasma surface, the perturbed magnetic field in the vacuum region is dominated by its poloidal component δBθ, with poloidal dependence sin2θ, in agreement with experiments. Aspects of the plasma equilibrium that affect the magnitude of the perturbed magnetic field in the vacuum region are discussed in the paper. Furthermore, the influence of a non-circular plasma cross section on the GAM frequency and on the spectrum of the global, perturbed magnetic field is analysed. It is found that the only significant effect of a non-circular cross section on the GAM frequency comes from elongation and its variation across the plasma radius. However, higher-order shaping effects, as well as finite aspect ratio, induce other Fourier components than m=2 in the magnetic halo that surrounds the GAM surface.

[1]  Deng Zhou Geodesic acoustic modes in tokamak plasmas with a radial equilibrium electric field , 2015 .

[2]  Ö. Gürcan,et al.  Geodesic acoustic modes in a fluid model of tokamak plasma: the effects of finite beta and collisionality , 2015, 1507.03232.

[3]  X. Garbet,et al.  Comprehensive comparisons of geodesic acoustic mode characteristics and dynamics between Tore Supra experiments and gyrokinetic simulations , 2015 .

[4]  L. Eliseev,et al.  The features of the global GAM in OH and ECRH plasmas in the T-10 tokamak , 2015 .

[5]  Lei Ye,et al.  Kinetic effect of toroidal rotation on the geodesic acoustic mode , 2015 .

[6]  F. Wagner,et al.  Geodesic acoustic mode investigation in the spherical Globus-M tokamak using multi-diagnostic approach , 2015 .

[7]  V. Lakhin,et al.  Analytical solutions for global geodesic acoustic modes in tokamak plasmas , 2014 .

[8]  F. Wagner,et al.  Geodesic acoustic mode observations in the Globus-M spherical tokamak , 2014 .

[9]  R. Sgalla Drift effects on electromagnetic geodesic acoustic modes , 2014, 1410.6827.

[10]  G. Murtaza,et al.  Electromagnetic effects on geodesic acoustic modes , 2014 .

[11]  H. Ren Perturbation analysis of electromagnetic geodesic acoustic modes , 2014 .

[12]  P. Hennequin,et al.  Complete multi-field characterization of the geodesic acoustic mode in the TCV tokamak , 2014 .

[13]  V. Lakhin,et al.  Global geodesic acoustic mode in a tokamak with positive magnetic shear and a monotonic temperature profile , 2014 .

[14]  V. Lakhin,et al.  Geodesic acoustic eigenmode for tokamak equilibrium with maximum of local GAM frequency , 2014 .

[15]  T. Lunt,et al.  Impact of magnetic perturbation coils on the edge radial electric field and turbulence in ASDEX Upgrade , 2015 .

[16]  V. Lutsenko,et al.  Geodesic acoustic mode in tokamaks: local consideration and eigenvalue analysis , 2013 .

[17]  G. Yuan,et al.  Observation of energetic-particle-induced GAM and nonlinear interactions between EGAM, BAEs and tearing modes on the HL-2A tokamak , 2013 .

[18]  Sterling P. Smith,et al.  Multi-field characteristics and eigenmode spatial structure of geodesic acoustic modes in DIII-D L-mode plasmas , 2013 .

[19]  A. Melnikov,et al.  Second harmonic effect on geodesic modes in tokamak plasmas , 2013 .

[20]  R. Hager,et al.  Geodesic acoustic mode frequencies in experimental tokamak equilibria , 2013 .

[21]  M. Groth,et al.  Observation of geodesic acoustic modes in the JET edge plasma , 2013 .

[22]  Y. Kolesnichenko,et al.  Geodesic acoustic mode frequency and the structure of Alfvén continuum in toroidal plasmas with high q2β , 2012 .

[23]  Ö. Gürcan,et al.  Detection of geodesic acoustic mode oscillations, using multiple signal classification analysis of Doppler backscattering signal on Tore Supra , 2012 .

[24]  T. Rhodes,et al.  Experimental investigation of geodesic acoustic mode spatial structure, intermittency, and interaction with turbulence in the DIII-D tokamak , 2012 .

[25]  A. Krämer-Flecken,et al.  Observation of geodesic acoustic modes (GAMs) and their radial propagation at the edge of the TEXTOR tokamak , 2011 .

[26]  F. Zonca,et al.  Kinetic Theories of Geodesic Acoustic Modes:Radial Structure,Linear Excitation by Energetic Particles and Nonlinear Saturation' , 2011 .

[27]  J. Dong,et al.  Electromagnetic effects of kinetic geodesic acoustic mode in tokamak plasmas , 2011 .

[28]  X. Garbet,et al.  Electromagnetic effects on geodesic acoustic and beta-induced Alfvén eigenmodes , 2010 .

[29]  Christer Wahlberg,et al.  Low-frequency magnetohydrodynamics and geodesic acoustic modes in toroidally rotating tokamak plasmas , 2009 .

[30]  J. Juul Rasmussen,et al.  Nonlocal analysis of the excitation of the geodesic acoustic mode by drift waves , 2009 .

[31]  R. Hager,et al.  Radial propagation of geodesic acoustic modes , 2009, 0904.3873.

[32]  H. Sanuki,et al.  Plasma elongation effects on temperature gradient driven instabilities and geodesic acoustic modes , 2009 .

[33]  X. Garbet,et al.  Multiple polarization of geodesic curvature induced modes , 2008 .

[34]  C Wahlberg,et al.  Geodesic acoustic mode induced by toroidal rotation in tokamaks. , 2008, Physical review letters.

[35]  G. Conway Amplitude behaviour of geodesic acoustic modes in the ASDEX Upgrade tokamak , 2008 .

[36]  H. Sanuki,et al.  Eigenmode analysis of geodesic acoustic modes , 2008 .

[37]  H. Sanuki,et al.  Plasma shaping effects on the geodesic acoustic mode in toroidally axisymmetric plasmas , 2008 .

[38]  X. Garbet,et al.  The role of plasma elongation on the linear damping of zonal flows , 2008 .

[39]  Y. Kishimoto,et al.  Dynamics of turbulent transport dominated by the geodesic acoustic mode near the critical gradient regime , 2008 .

[40]  G. Conway,et al.  Frequency scaling and localization of geodesic acoustic modes in ASDEX Upgrade , 2008 .

[41]  N. Chakrabarti,et al.  Excitation of geodesic acoustic modes by ion temperature gradient modes , 2008 .

[42]  A. Fujisawa A review of zonal flow experiments , 2008 .

[43]  Fulvio Zonca,et al.  Radial structures and nonlinear excitation of geodesic acoustic modes , 2007 .

[44]  Deng Zhou Electromagnetic geodesic acoustic modes in tokamak plasmas , 2007 .

[45]  X. Garbet,et al.  Turbulent excitation of plasma oscillations in the acoustic frequency range , 2007 .

[46]  C. Wahlberg Effect of a noncircular plasma cross section on the ideal (1, 1) mode in low-shear tokamaks , 2007 .

[47]  H. Sanuki,et al.  Multiple eigenmodes of geodesic acoustic mode in collisionless plasmas , 2006 .

[48]  Y. Hamada,et al.  Geodesic–acoustic-mode in JFT-2M tokamak plasmas , 2006 .

[49]  P. Gohil,et al.  Structure and scaling properties of the geodesic acoustic mode , 2006 .

[50]  S. E. Lysenko,et al.  Investigation of geodesic acoustic mode oscillations in the T-10 tokamak , 2006 .

[51]  P. Diamond,et al.  Geodesic Acoustic Eigenmodes , 2006 .

[52]  S. Pinches,et al.  Explanation of the JET n = 0 chirping mode , 2006 .

[53]  Ian Hutchinson,et al.  Principles of Magnetohydrodynamics , 2005 .

[54]  T. S. Hahm,et al.  Zonal flows in plasma—a review , 2005 .

[55]  C. Wahlberg Aspect ratio dependence of the ideal internal kink mode stability in a toroidal plasma with circular cross section , 2004 .

[56]  C. Wahlberg,et al.  Effect of combined triangularity and ellipticity on the stability limit of the ideal internal kink mode in a tokamak , 2002 .

[57]  A. Bondeson,et al.  Stabilization of the Mercier modes in a tokamak by toroidal plasma rotation , 2001 .

[58]  A. Bondeson,et al.  Stabilization of the internal kink mode in a tokamak by toroidal plasma rotation , 2000 .

[59]  C. Wahlberg Analytical stability condition for the ideal m=n=1 kink mode in a toroidal plasma with elliptic cross section , 1998 .

[60]  W. D’haeseleer,et al.  Flux Coordinates and Magnetic Field Structure , 1991 .

[61]  Gerhard Rayna,et al.  Reduce - software for algebraic computation , 1987, Symbolic computation: artificial intelligence.

[62]  John M. Dawson,et al.  Geodesic Acoustic Waves in Hydromagnetic Systems , 1968 .

[63]  Manuel Rotenberg,et al.  ON HYDROMAGNETIC STABILITY OF STATIONARY EQUILIBRIA , 1960 .