A general formulation of conceptual spaces as a meso level representation

Representing cognitive processes remains one of the great research challenges. Many important application areas, such as clinical diagnosis, operate in an environment of relative magnitudes, counts, shapes, colours, etc. which are not well captured by current representational approaches. This paper presents conceptual spaces as a meso level representation for cognitive systems, between the high level symbolic representations and the subconceptual connectionist representations which have dominated AI. Conceptual spaces emphasize orders and measures and therefore naturally represent counts, magnitudes, and volumes. Taking Grdenfors' decade-long investigation of conceptual spaces [Grdenfors, Conceptual Spaces: The Geometry of Thought, MIT Press, 2000] as start point, the paper presents a formal foundation for conceptual spaces, shows how they are theoretically and practically linked to higher and lower representational levels, and develops dynamics which allow the orbits of states in the space to solve appropriate meso level reasoning tasks. Interpretations of conceptual spaces are given to illustrate the formal definitions and show the flexibility of the representation.

[1]  R. Shepard,et al.  Second-order isomorphism of internal representations: Shapes of states ☆ , 1970 .

[2]  Jan Paredis The Emergence of Data Structures from Local Interactions , 1990, PPSN.

[3]  David Kirsh,et al.  Today the Earwig, Tomorrow Man? , 1991, Artif. Intell..

[4]  Robert L. Goldstone Influences of categorization on perceptual discrimination. , 1994 .

[5]  M. Humphreys,et al.  Toward a theory of human memory: Data structures and access processes , 1994, Behavioral and Brain Sciences.

[6]  R. Nosofsky Similarity Scaling and Cognitive Process Models , 1992 .

[7]  A. Markman,et al.  In Defense of Representation , 2000, Cognitive Psychology.

[8]  Peter Gärdenfors,et al.  Concept combination: a geometrical model , 2000 .

[9]  H. S. M. Coxeter,et al.  Foundations of Geometry , 1962, Mathematical Gazette.

[10]  Robert L. Goldstone Influences of categorization on perceptual discrimination. , 1994, Journal of experimental psychology. General.

[11]  S. Dehaene Varieties of numerical abilities , 1992, Cognition.

[12]  Janet Aisbett,et al.  Conceptual Spaces as Voltage Maps , 2001, IWANN.

[13]  T. Sejnowski,et al.  Irresistible environment meets immovable neurons , 1997, Behavioral and Brain Sciences.

[14]  Virginio Cantoni Human and Machine Perception , 1997, Springer US.

[15]  N. Goodman Fact, Fiction, and Forecast , 1955 .

[16]  Salvatore Gaglio,et al.  Understanding dynamic scenes , 2000, Artif. Intell..

[17]  M. Page,et al.  Connectionist modelling in psychology: A localist manifesto , 2000, Behavioral and Brain Sciences.

[18]  Clyde L. Hardin,et al.  Color for Philosophers: Unweaving the Rainbow , 1988 .

[19]  T. Gelder,et al.  It's about time: an overview of the dynamical approach to cognition , 1996 .

[20]  Takashi Omori,et al.  Emergence of symbolic behavior from brain like memory with dynamic attention , 1999, Neural Networks.

[21]  Walter J. Freeman Qualitative Overview of Population Neurodynamics , 1994 .

[22]  C. Hempel,et al.  Aspects of Scientific Explanation and Other Essays in the Philosophy of Science. , 1966 .

[23]  Stephen Grossberg,et al.  ARTMAP: supervised real-time learning and classification of nonstationary data by a self-organizing neural network , 1991, [1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering.

[24]  R. Shepard Integrality versus separability of stimulus dimensions: From an early convergence of evidence to a p , 1991 .

[25]  N. H. Williams,et al.  Combinatorial Set Theory , 1977 .

[26]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[27]  W. Quine Ontological Relativity and Other Essays , 1969 .

[28]  Peter Gärdenfors,et al.  Conceptual spaces - the geometry of thought , 2000 .

[29]  Z. Dienes,et al.  A theory of implicit and explicit knowledge , 1999, Behavioral and Brain Sciences.

[30]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[31]  Peter Gärdenfors,et al.  A Geometric Model of Concept Formation , 1992 .

[32]  S. Laurence,et al.  Concepts: Core Readings , 1999 .

[33]  Setsuo Ohsuga,et al.  Information Modelling and Knowledge Bases , 1990 .

[34]  Loredana Cornero,et al.  Women , 1893, The Hospital.

[35]  George Finlay Simmons,et al.  Introduction to Topology and Modern Analysis , 1963 .

[36]  Jules Davidoff,et al.  Similarity and categorisation: neuropsychological evidence for a dissociation in explicit categorisation tasks , 1999, Cognition.

[37]  Peter Gärdenfors,et al.  Symbolic, Conceptual and Subconceptual Representations , 1997 .

[38]  L. Barsalou,et al.  Whither structured representation? , 1999, Behavioral and Brain Sciences.

[39]  R. Shepard,et al.  Toward a universal law of generalization for psychological science. , 1987, Science.

[40]  R. Cowie,et al.  The perception of structure , 1997 .

[41]  A. Damasio,et al.  A neural basis for the retrieval of conceptual knowledge , 1997, Neuropsychologia.

[42]  Aldo Gangemi,et al.  A Medical Ontology Library That Integrates the UMLS MetathesaurusTM , 1999, AIMDM.

[43]  Stephen Grossberg,et al.  A massively parallel architecture for a self-organizing neural pattern recognition machine , 1988, Comput. Vis. Graph. Image Process..

[44]  Stephen Grossberg,et al.  ART 3: Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures , 1990, Neural Networks.

[45]  M. de Rijke,et al.  Logic, language and computation, vol. 2 , 1999 .

[46]  M. Resnik,et al.  Aspects of Scientific Explanation. , 1966 .

[47]  Janet Aisbett,et al.  A Tunable Distance Measure for Coloured Solid Models , 1994, Artif. Intell..

[48]  George Lakoff,et al.  Women, Fire, and Dangerous Things , 1987 .