Quantitative Characterization of Functional Anatomical Contributions to Cognitive Control under Uncertainty

Although much evidence indicates that RT increases as a function of computational load in many cognitive tasks, quantification of changes in neural activity related to increasing demand of cognitive control has rarely been attempted. In this fMRI study, we used a majority function task to quantify the effect of computational load on brain activation, reflecting the mental processes instantiated by cognitive control under conditions of uncertainty. We found that the activation of the frontoparieto-cingulate system as well as the deactivation of the anticorrelated default mode network varied parametrically as a function of information uncertainty, estimated as entropy with an information theoretic model. The current findings suggest that activity changes in the dynamic networks of the brain (especially the frontoparieto-cingulate system) track with information uncertainty, rather than only conflict or other commonly proposed targets of cognitive control.

[1]  Jin Fan,et al.  The activation of attentional networks , 2005, NeuroImage.

[2]  Chi-Hung Juan,et al.  A critical role of temporoparietal junction in the integration of top‐down and bottom‐up attentional control , 2015, Human brain mapping.

[3]  Tor D. Wager,et al.  Common and unique components of response inhibition revealed by fMRI , 2005, NeuroImage.

[4]  M. Botvinick,et al.  Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[5]  D. V. Cramon,et al.  Decision making, performance and outcome monitoring in frontal cortical areas , 2004, Nature Neuroscience.

[6]  J. Allman,et al.  Intuition and autism: a possible role for Von Economo neurons , 2005, Trends in Cognitive Sciences.

[7]  Jin Fan,et al.  Cognitive Control in Majority Search: A Computational Modeling Approach , 2011, Front. Hum. Neurosci..

[8]  M Corbetta,et al.  Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[9]  E. Koechlin,et al.  Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[10]  M D'Esposito,et al.  Functional Neuroimaging of Cognition , 2000, Seminars in neurology.

[11]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[12]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[13]  V. Menon,et al.  Saliency, switching, attention and control: a network model of insula function , 2010, Brain Structure and Function.

[14]  A. Craig,et al.  How do you feel — now? The anterior insula and human awareness , 2009, Nature Reviews Neuroscience.

[15]  Alan S. Brown,et al.  Information Processing and Cognition: The Loyola Symposium , 1976 .

[16]  David Badre,et al.  Cognitive control, hierarchy, and the rostro–caudal organization of the frontal lobes , 2008, Trends in Cognitive Sciences.

[17]  G. Glover,et al.  Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control , 2007, The Journal of Neuroscience.

[18]  S. Quartz,et al.  Human Insula Activation Reflects Risk Prediction Errors As Well As Risk , 2008, The Journal of Neuroscience.

[19]  J. Morrison,et al.  Spindle neurons of the human anterior cingul. Ate cortex , 1995, The Journal of comparative neurology.

[20]  Karl J. Friston,et al.  The Trouble with Cognitive Subtraction , 1996, NeuroImage.

[21]  M. Mintun,et al.  Brain work and brain imaging. , 2006, Annual review of neuroscience.

[22]  Jin Fan,et al.  Anterior insular cortex is necessary for empathetic pain perception. , 2012, Brain : a journal of neurology.

[23]  Leslie G. Ungerleider,et al.  The prefrontal cortex and the executive control of attention , 2008, Experimental Brain Research.

[24]  Jin Fan,et al.  Cognition-emotion integration in the anterior insular cortex. , 2013, Cerebral cortex.

[25]  Asher Cohen,et al.  Perceptual Dimensional Constraints in Response Selection Processes , 1997, Cognitive Psychology.

[26]  A. Pavlovic,et al.  The anterior cingulate cortex , 2009 .

[27]  E. Procyk,et al.  Anterior cingulate activity during routine and non-routine sequential behaviors in macaques , 2000, Nature Neuroscience.

[28]  B McElree,et al.  Covert attention accelerates the rate of visual information processing , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Jonathan D. Cohen,et al.  Conflict monitoring versus selection-for-action in anterior cingulate cortex , 1999, Nature.

[30]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[31]  Patrick R Hof,et al.  Von Economo Neurons in the Elephant Brain , 2009, Anatomical record.

[32]  E. Koechlin,et al.  Motivation and cognitive control in the human prefrontal cortex , 2009, Nature Neuroscience.

[33]  R Kawashima,et al.  Positron-emission tomography studies of cross-modality inhibition in selective attentional tasks: closing the "mind's eye". , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[34]  M. Posner,et al.  The functional integration of the anterior cingulate cortex during conflict processing. , 2008, Cerebral cortex.

[35]  Tor D. Wager,et al.  Cognitive and Motivational Functions of the Human Prefrontal Cortex , 2009 .

[36]  M. Walton,et al.  Interactions between decision making and performance monitoring within prefrontal cortex , 2004, Nature Neuroscience.

[37]  K. Hugdahl,et al.  Resting-state glutamate level in the anterior cingulate predicts blood-oxygen level-dependent response to cognitive control , 2012, Proceedings of the National Academy of Sciences.

[38]  Nikos K Logothetis,et al.  The ins and outs of fMRI signals , 2007, Nature Neuroscience.

[39]  E. Smith,et al.  Choice reaction time: an analysis of the major theoretical positions. , 1968, Psychological bulletin.

[40]  M. Lauritzen Reading vascular changes in brain imaging: is dendritic calcium the key? , 2005, Nature Reviews Neuroscience.

[41]  T. Naidich,et al.  The insula: anatomic study and MR imaging display at 1.5 T. , 2004, AJNR. American journal of neuroradiology.

[42]  M. Lauritzen,et al.  Impaired Neurovascular Coupling by Transhemispheric Diaschisis in Rat Cerebral Cortex , 2004, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[43]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[44]  Jonathan D. Cohen,et al.  Anterior Cingulate Cortex, Conflict Monitoring, and Levels of Processing , 2001, NeuroImage.

[45]  J. O'Doherty,et al.  Empathy for Pain Involves the Affective but not Sensory Components of Pain , 2004, Science.

[46]  Kristina M. Visscher,et al.  A Core System for the Implementation of Task Sets , 2006, Neuron.

[47]  R. K. Simpson Nature Neuroscience , 2022 .

[48]  Patrick R Hof,et al.  Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae) , 2007, Anatomical record.

[49]  J. Buxbaum,et al.  Neuropathology of the Anterior Midcingulate Cortex in Young Children With Autism , 2014, Journal of neuropathology and experimental neurology.

[50]  H. Critchley,et al.  Neural Activity in the Human Brain Relating to Uncertainty and Arousal during Anticipation , 2001, Neuron.

[51]  E. Miller,et al.  The prefontral cortex and cognitive control , 2000, Nature Reviews Neuroscience.

[52]  E. Miller,et al.  THE PREFRONTAL CORTEX AND COGNITIVE CONTROL , 2000 .

[53]  Michael Breakspear,et al.  Effective connectivity within the frontoparietal control network differentiates cognitive control and working memory , 2015, NeuroImage.

[54]  K. D. Singh,et al.  Negative BOLD in the visual cortex: Evidence against blood stealing , 2004, Human brain mapping.

[55]  J. Cohen,et al.  Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. , 2000, Science.

[56]  Jin Fan,et al.  Cognitive and Brain Consequences of Conflict , 2003, NeuroImage.

[57]  Karl J. Friston,et al.  A Global Estimator Unbiased by Local Changes , 2001, NeuroImage.

[58]  John A. Detre,et al.  Neural correlates of voluntary and involuntary risk taking in the human brain: An fMRI Study of the Balloon Analog Risk Task (BART) , 2008, NeuroImage.

[59]  E. Koechlin,et al.  Anterior Prefrontal Function and the Limits of Human Decision-Making , 2007, Science.

[60]  M. Posner,et al.  Localization of cognitive operations in the human brain. , 1988, Science.

[61]  E. Koechlin,et al.  The Architecture of Cognitive Control in the Human Prefrontal Cortex , 2003, Science.

[62]  A. Shmuel,et al.  Sustained Negative BOLD, Blood Flow and Oxygen Consumption Response and Its Coupling to the Positive Response in the Human Brain , 2002, Neuron.

[63]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[64]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[65]  Timothy E. J. Behrens,et al.  Choice, uncertainty and value in prefrontal and cingulate cortex , 2008, Nature Neuroscience.

[66]  M. Posner,et al.  Cognitive and emotional influences in anterior cingulate cortex , 2000, Trends in Cognitive Sciences.

[67]  Michael H. Buonocore,et al.  Integrating Conflict Detection and Attentional Control Mechanisms , 2011, Journal of Cognitive Neuroscience.

[68]  T. Robbins,et al.  Dissociable roles of prefrontal subregions in self-ordered working memory performance , 2008, Neuropsychologia.

[69]  M. Botvinick,et al.  Conflict monitoring and cognitive control. , 2001, Psychological review.

[70]  Joshua W. Brown,et al.  Medial prefrontal cortex as an action-outcome predictor , 2011, Nature Neuroscience.

[71]  Yanhong Wu,et al.  Interocular suppression prevents interference in a flanker task , 2015, Front. Psychol..

[72]  Alan C. Evans,et al.  Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. , 1993, Journal of neurophysiology.

[73]  M. Platt,et al.  Risky business: the neuroeconomics of decision making under uncertainty , 2008, Nature Neuroscience.

[74]  G. Mangun,et al.  The neural mechanisms of top-down attentional control , 2000, Nature Neuroscience.

[75]  Cameron S. Carter,et al.  Conflict-related activity in the caudal anterior cingulate cortex in the absence of awareness , 2009, Biological Psychology.

[76]  C. Carter,et al.  The neural substrates of cognitive control deficits in autism spectrum disorders , 2009, Neuropsychologia.

[77]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[78]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[79]  M. Botvinick,et al.  Anterior cingulate cortex, error detection, and the online monitoring of performance. , 1998, Science.

[80]  M. Posner,et al.  Attention and cognitive control. , 1975 .

[81]  Leslie G. Ungerleider,et al.  The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[82]  Jin Fan,et al.  Reduced Efficiency and Capacity of Cognitive Control in Autism Spectrum Disorder , 2016, Autism research : official journal of the International Society for Autism Research.

[83]  Karl J. Friston,et al.  Anterior insular cortex and emotional awareness , 2013, The Journal of comparative neurology.

[84]  E. Crone,et al.  Dissociation of response conflict, attentional selection, and expectancy with functional magnetic resonance imaging. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[85]  Enrico Simonotto,et al.  The functional anatomy of inspection time: an event-related fMRI study , 2004, NeuroImage.

[86]  Jin Fan,et al.  Functional Dissociation of the Frontoinsular and Anterior Cingulate Cortices in Empathy for Pain , 2010, The Journal of Neuroscience.

[87]  Bruce D. McCandliss,et al.  Response Anticipation and Response Conflict: An Event-Related Potential and Functional Magnetic Resonance Imaging Study , 2007, The Journal of Neuroscience.

[88]  I. Fried,et al.  Coupling Between Neuronal Firing, Field Potentials, and fMRI in Human Auditory Cortex , 2005, Science.

[89]  T. Paus,et al.  Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: a review of 107 PET activation studies , 1998, Neuroreport.

[90]  M. Raichle,et al.  The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[91]  N. Logothetis,et al.  Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1 , 2006, Nature Neuroscience.

[92]  Colin M. Macleod Half a century of research on the Stroop effect: an integrative review. , 1991, Psychological bulletin.

[93]  Martin Lauritzen,et al.  Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[94]  J. Jonides,et al.  Interference resolution: Insights from a meta-analysis of neuroimaging tasks , 2007, Cognitive, affective & behavioral neuroscience.

[95]  M. Posner INFORMATION REDUCTION IN THE ANALYSIS OF SEQUENTIAL TASKS. , 1964, Psychological review.

[96]  D. G. Albrecht,et al.  Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? , 2000, Nature Neuroscience.

[97]  J. Hirsch,et al.  A Neural Representation of Categorization Uncertainty in the Human Brain , 2006, Neuron.

[98]  S. Ishii,et al.  Resolution of Uncertainty in Prefrontal Cortex , 2006, Neuron.

[99]  Justin L. Vincent,et al.  Distinct brain networks for adaptive and stable task control in humans , 2007, Proceedings of the National Academy of Sciences.

[100]  Timothy E. J. Behrens,et al.  Learning the value of information in an uncertain world , 2007, Nature Neuroscience.

[101]  R. Dolan,et al.  Knowing how much you don't know: a neural organization of uncertainty estimates , 2012, Nature Reviews Neuroscience.

[102]  M. Posner,et al.  Executive attention: Conflict, target detection, and cognitive control. , 1998 .

[103]  Takashi R Sato,et al.  Neuronal Basis of Covert Spatial Attention in the Frontal Eye Field , 2005, The Journal of Neuroscience.

[104]  H. Akaike A new look at the statistical model identification , 1974 .

[105]  Jonathan D. Cohen,et al.  Functional Imaging of Decision Conflict , 2008, The Journal of Neuroscience.

[106]  C. Eriksen,et al.  Effects of noise letters upon the identification of a target letter in a nonsearch task , 1974 .

[107]  P. T. Fox,et al.  Positron emission tomographic studies of the cortical anatomy of single-word processing , 1988, Nature.

[108]  Soyoung Q. Park,et al.  The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans , 2010, Brain Structure and Function.

[109]  J. Gläscher,et al.  Lesion mapping of cognitive control and value-based decision making in the prefrontal cortex , 2012, Proceedings of the National Academy of Sciences.

[110]  Jin Fan,et al.  Searching for the Majority: Algorithms of Voluntary Control , 2008, PloS one.

[111]  Timothy O. Laumann,et al.  Functional Network Organization of the Human Brain , 2011, Neuron.

[112]  Raymond J. Dolan,et al.  Information theory, novelty and hippocampal responses: unpredicted or unpredictable? , 2005, Neural Networks.

[113]  S. Petersen,et al.  A dual-networks architecture of top-down control , 2008, Trends in Cognitive Sciences.

[114]  R. Freeman,et al.  Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity , 2007, Nature Neuroscience.

[115]  David A. Medler,et al.  Neural correlates of sensory and decision processes in auditory object identification , 2004, Nature Neuroscience.

[116]  A. Treisman Perceptual grouping and attention in visual search for features and for objects. , 1982, Journal of experimental psychology. Human perception and performance.

[117]  C. Summerfield,et al.  An information theoretical approach to prefrontal executive function , 2007, Trends in Cognitive Sciences.

[118]  Karl J. Friston,et al.  A direct quantitative relationship between the functional properties of human and macaque V5 , 2000, Nature Neuroscience.

[119]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.

[120]  V. Menon,et al.  A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks , 2008, Proceedings of the National Academy of Sciences.

[121]  L. Pessoa On the relationship between emotion and cognition , 2008, Nature Reviews Neuroscience.

[122]  D. Yves von Cramon,et al.  The neural implementation of multi-attribute decision making: A parametric fMRI study with human subjects , 2006, NeuroImage.

[123]  Jin Fan,et al.  Common and distinct networks underlying reward valence and processing stages: A meta-analysis of functional neuroimaging studies , 2011, Neuroscience & Biobehavioral Reviews.

[124]  Jin Fan,et al.  An information theory account of cognitive control , 2014, Front. Hum. Neurosci..

[125]  G. McCarthy,et al.  Perceiving patterns in random series: dynamic processing of sequence in prefrontal cortex , 2002, Nature Neuroscience.

[126]  J. Allman,et al.  A neuronal morphologic type unique to humans and great apes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[127]  J. Allman,et al.  Total number and volume of Von Economo neurons in the cerebral cortex of cetaceans , 2009, The Journal of comparative neurology.

[128]  Nikolas Offenhauser,et al.  Activity‐induced tissue oxygenation changes in rat cerebellar cortex: interplay of postsynaptic activation and blood flow , 2005, The Journal of physiology.