Ontological Blending in DOL

We introduce ontological blending as a method for combining ontologies. Compared with existing combination techniques that aim at integrating or assimilating categories and relations of thematically related ontologies, blending aims at creatively generating (new) categories and ontological definitions; this is done on the basis of input ontologies whose domains are thematically distinct but whose specifications share structural or logical properties. As a result, ontological blending can generate new ontologies and concepts and it allows a more flexible technique for ontology combination compared to existing methods. Our approach to computational creativity in conceptual blending is inspired by methods rooted in cognitive science (e.g., analogical reasoning), ontological engineering, and algebraic specification. Specifically, we introduce the basic formal definitions for ontological blending, and show how the distributed ontology language DOL (currently being standardised within the OntoIOp—Ontology Integration and Interoperability—activity of ISO/TC 37/SC 3) can be used to declaratively specify blending diagrams.

[1]  D. Gentner Structure‐Mapping: A Theoretical Framework for Analogy* , 1983 .

[2]  Brian Falkenhainer,et al.  The Structure-Mapping Engine * , 2003 .

[3]  Horst Herrlich,et al.  Abstract and concrete categories , 1990 .

[4]  Joseph A. Goguen,et al.  Algebraic semantics of imperative programs , 1996, Foundations of computing series.

[5]  Seana Coulson,et al.  Semantic Leaps: FRAME-SHIFTING , 2001 .

[6]  Peter Gärdenfors,et al.  Conceptual spaces - the geometry of thought , 2000 .

[7]  G. Fauconnier,et al.  The Way We Think: Conceptual Blending and the Mind''s Hidden Complexities. Basic Books , 2002 .

[8]  Werner Kuhn,et al.  Modeling the Semantics of Geographic Categories through Conceptual Integration , 2002, GIScience.

[9]  Nicola Guarino,et al.  Evaluating ontological decisions with OntoClean , 2002, CACM.

[10]  Yannis Kalfoglou,et al.  Ontology mapping: the state of the art , 2003, The Knowledge Engineering Review.

[11]  Jérôme Euzenat,et al.  Specification of a Common Framework for Characterizing Alignment , 2004 .

[12]  David Taniar,et al.  Semantic Completeness in Sub-ontology Extraction Using Distributed Methods , 2004, ICCSA.

[13]  R. Núñez Creating mathematical infinities: Metaphor, blending, and the beauty of transfinite cardinals , 2005 .

[14]  K. Jaszczolt On Translating 'What Is Said': Tertium Comparationis in Contrastive Semantics and Pragmatics* , 2005 .

[15]  Ian Horrocks,et al.  The Even More Irresistible SROIQ , 2006, KR.

[16]  Pascal Hitzler,et al.  Formalizing Ontology Alignment and its Operations with Category Theory , 2006, FOIS.

[17]  David Taniar,et al.  MOVE: A Distributed Framework for Materialized Ontology View Extraction , 2006, Algorithmica.

[18]  C.G. Pereira,et al.  Creativity and Artificial Intelligence: A Conceptual Blending Approach , 2007 .

[19]  S. Wölfl,et al.  The Heterogeneous Tool Set , 2007 .

[20]  Jérôme Euzenat,et al.  Semantic Precision and Recall for Ontology Alignment Evaluation , 2007, IJCAI.

[21]  Mark Turner,et al.  The Way We Imagine1 , 2007 .

[22]  Till Mossakowski,et al.  The OWL in the CASL - Designing Ontologies Across Logics , 2008, OWLED.

[23]  Heterogeneously Structured Ontologies Integration , Connection , and Refinement , 2008 .

[24]  Gordon Plotkin,et al.  A Note on Inductive Generalization , 2008 .

[25]  Till Mossakowski,et al.  Heterogeneous colimits , 2008, 2008 IEEE International Conference on Software Testing Verification and Validation Workshop.

[26]  Heiner Stuckenschmidt,et al.  A Pattern-based Ontology Matching Approach for Detecting Complex Correspondences , 2009, OM.

[27]  Immanuel Normann Automated Theory Interpretation , 2009 .

[28]  Angela Schwering,et al.  Syntactic principles of heuristic-driven theory projection , 2009, Cognitive Systems Research.

[29]  W. R. van Hage Evaluating Ontology-Alignment Techniques , 2009 .

[30]  O. Kutz,et al.  Context Discovery via Theory Interpretation , 2009 .

[31]  J. Wenny Rahayu,et al.  Ontology driven semantic profiling and retrieval in medical information systems , 2009, J. Web Semant..

[32]  Joseph A. Goguen,et al.  Style: A Computational and Conceptual Blending-Based Approach , 2010, The Structure of Style.

[33]  Till Mossakowski,et al.  Towards Ontological Blending , 2010, AIMSA.

[34]  Till Mossakowski,et al.  Carnap, Goguen, and the Hyperontologies: Logical Pluralism and Heterogeneous Structuring in Ontology Design , 2010, Logica Universalis.

[35]  Kai-Uwe Kühnberger,et al.  Towards a Domain-Independent Computational Framework for Theory Blending , 2011, AAAI Fall Symposium: Advances in Cognitive Systems.

[36]  Mehul Bhatt,et al.  Ontological modelling of form and function for architectural design , 2012, Appl. Ontology.

[37]  Christoph Lange,et al.  Three Semantics for the Core of the Distributed Ontology Language , 2012, FOIS.

[38]  J. Euzenat,et al.  Ontology Matching , 2007, Springer Berlin Heidelberg.