Renormalized Entropy Solutions for Quasi-linear Anisotropic Degenerate Parabolic Equations

We prove the well posedness (existence and uniqueness) of renormalized entropy solutions to the Cauchy problem for quasilinear anisotropic degenerate parabolic equations with L data. This paper complements the work by Chen and Perthame [19], who developed a pure L theory based on the notion of kinetic solutions.

[1]  Corrado Mascia,et al.  Nonhomogeneous Dirichlet Problems for Degenerate Parabolic-Hyperbolic Equations , 2002 .

[2]  P. Lions,et al.  Ordinary differential equations, transport theory and Sobolev spaces , 1989 .

[3]  G. D. Maso,et al.  Definition and existence of renormalized solutions of elliptic equations with general measure data , 1997 .

[4]  N. Risebro,et al.  CONVERGENCE OF FINITE DIFFERENCE SCHEMES FOR VISCOUS AND INVISCID CONSERVATION LAWS WITH ROUGH COEFFICIENTS , 2001 .

[5]  J. C. Menéndez,et al.  Renormalized entropy solutions of scalar conservation laws. , 2002 .

[6]  Bernardo Cockburn,et al.  Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations , 1999 .

[7]  Gui-Qiang G. Chen,et al.  Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations , 2003 .

[8]  D. Blanchard,et al.  Renormalised solutions of nonlinear parabolic problems with L1 data: existence and uniqueness , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[9]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[10]  P. Lions Mathematical topics in fluid mechanics , 1996 .

[11]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[12]  L. Boccardo,et al.  Existence and regularity of renormalized solutions for some elliptic problems involving derivatives of nonlinear terms , 1993 .

[13]  Shaoqiang Tang,et al.  Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems , 2004, Math. Comput..

[14]  J. Carrillo On the uniqueness of the solution of the evolution dam problem , 1994 .

[15]  Steinar Evje,et al.  Monotone Difference Approximations Of BV Solutions To Degenerate Convection-Diffusion Equations , 2000, SIAM J. Numer. Anal..

[16]  Gui-Qiang G. Chen,et al.  Stability of Entropy Solutions to the Cauchy Problem for a Class of Nonlinear Hyperbolic-Parabolic Equations , 2001, SIAM J. Math. Anal..

[17]  Raphaèle Herbin,et al.  EXISTENCE AND UNIQUENESS OF THE ENTROPY SOLUTION TO A NONLINEAR HYPERBOLIC EQUATION , 1995 .

[18]  Mario Ohlberger A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations , 2001 .

[19]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[20]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[21]  A. I. Vol'pert,et al.  Cauchy's Problem for Degenerate Second Order Quasilinear Parabolic Equations , 1969 .

[22]  J. Carrillo,et al.  Uniqueness of Renormalized Solutions of Degenerate Elliptic-Parabolic Problems , 1999 .

[23]  Local $T$-sets and renormalized solutions of degenerate quasilinear elliptic equations with an $L^1$-datum , 1996 .

[24]  Anthony Michel,et al.  Entropy Formulation for Parabolic Degenerate Equations with General Dirichlet Boundary Conditions and Application to the Convergence of FV Methods , 2003, SIAM J. Numer. Anal..

[25]  P. Bénilan,et al.  Sur l'équation générale ut = a(., u, φ(., u)x)x + ν dans L1 : II. Le problème d'évolution , 1995 .

[26]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[27]  P. Lions,et al.  On the Fokker-Planck-Boltzmann equation , 1988 .

[28]  Gui-Qiang G. Chen,et al.  L 1 -FRAMEWORK FOR CONTINUOUS DEPENDENCE AND ERROR ESTIMATES FOR QUASILINEAR ANISOTROPIC DEGENERATE PARABOLIC EQUATIONS , 2004 .

[29]  J. Vázquez,et al.  An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations , 1995 .

[30]  N. Risebro,et al.  On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients , 2003 .

[31]  R. Natalini,et al.  Diffusive BGK approximations for nonlinear multidimensional parabolic equations , 2000 .

[32]  Steinar Evje,et al.  On Strongly Degenerate Convection–Diffusion Problems Modeling Sedimentation–Consolidation Processes , 2000 .

[33]  D. Blanchard,et al.  Renormalized solutions for a class of nonlinear evolution problems , 1998 .

[34]  K. Karlsen,et al.  Numerical solution of reservoir flow models based on large time step operator splitting algorithms , 2000 .

[35]  Tamir Tassa Uniqueness of Piecewise Smooth Weak Solutions of Multidimensional Degenerate Parabolic Equations , 1997 .

[36]  J. Carrillo Entropy Solutions for Nonlinear Degenerate Problems , 1999 .

[37]  P. Lions,et al.  On the Cauchy problem for Boltzmann equations: global existence and weak stability , 1989 .

[38]  Mario Ohlberger,et al.  A note on the uniqueness of entropy solutions of nonlinear degenerate parabolic equations , 2002, Journal of Mathematical Analysis and Applications.

[39]  G. Gagneux,et al.  Solution forte entropique de lois scalaires hyperboliques-paraboliques dégénérées , 1999 .

[40]  D. Blanchard,et al.  Existence and Uniqueness of a Renormalized Solution for a Fairly General Class of Nonlinear Parabolic Problems , 2001 .

[41]  Thierry Gallouët,et al.  Convergence of a finite volume scheme for nonlinear degenerate parabolic equations , 2002, Numerische Mathematik.