Adsorption of Bovine Serum Albumin and lysozyme on siliceous MCM-41

[1]  M. Jaroniec,et al.  Al-MCM-41 sorbents for bovine serum albumin: relation between Al content and performance , 2004 .

[2]  M. Hartmann,et al.  Adsorption of Lysozyme over Mesoporous Molecular Sieves MCM-41 and SBA-15: Influence of pH and Aluminum Incorporation , 2004 .

[3]  B. K. Hodnett,et al.  Mechanistic and Structural Features of Protein Adsorption onto Mesoporous Silicates , 2002 .

[4]  D. Zhao,et al.  Biomolecule separation using large pore mesoporous SBA-15 as a substrate in high performance liquid chromatography. , 2002, Chemical communications.

[5]  T. Kajino,et al.  Immobilized enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent , 2001 .

[6]  Y. Tarasevich Interaction of Globular Albumins with the Silica Surface , 2001 .

[7]  Flow microcalorimetric measurements for bovine serum albumin on reversed-phase and anion-exchange supports under overloaded conditions. , 2001, Journal of chromatography. A.

[8]  B. K. Hodnett,et al.  Adsorption and activity of cytochrome c on mesoporous silicates , 2001 .

[9]  C. Botting,et al.  Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve , 2001 .

[10]  Chengyue Li,et al.  A new support for the immobilization of penicillin acylase , 2000 .

[11]  Yong Yang,et al.  Highly Ordered MCM-41 Silica Prepared in the Presence of Decyltrimethylammonium Bromide , 2000 .

[12]  M. Jaroniec,et al.  Determination of Pore Size and Pore Wall Structure of MCM-41 by Using Nitrogen Adsorption, Transmission Electron Microscopy, and X-ray Diffraction , 2000 .

[13]  N. Pinto,et al.  Study of hydrophobic interaction adsorption of bovine serum albumin under overloaded conditions using flow microcalorimetry. , 1999, Journal of chromatography. A.

[14]  M. Jaroniec,et al.  Expanding the Pore Size of MCM-41 Silicas: Use of Amines as Expanders in Direct Synthesis and Postsynthesis Procedures , 1999 .

[15]  P. Tengvall,et al.  Molecular packing of HSA, IgG, and fibrinogen adsorbed on silicon by AFM imaging , 1998 .

[16]  M. Jaroniec,et al.  Characterization of Large-Pore MCM-41 Molecular Sieves Obtained via Hydrothermal Restructuring , 1997 .

[17]  M. Jaroniec,et al.  Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements , 1997 .

[18]  M. Jaroniec,et al.  Adsorption Study of Surface and Structural Properties of MCM-41 Materials of Different Pore Sizes , 1997 .

[19]  K. Balkus,et al.  Enzyme immobilization in MCM-41 molecular sieve , 1996 .

[20]  A. Neimark,et al.  Capillary Hysteresis in Nanopores: Theoretical and Experimental Studies of Nitrogen Adsorption on MCM-41 , 1995 .

[21]  J. B. Higgins,et al.  Model Structures for MCM-41 Materials: A Molecular Dynamics Simulation , 1994 .

[22]  K. Gubbins,et al.  Pore size distribution analysis of microporous carbons: a density functional theory approach , 1993 .

[23]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[24]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[25]  W. Norde Energy and entropy of protein adsorption. , 1992 .

[26]  W. Norde,et al.  Comparative protein adsorption in model systems , 1990 .