Mechanical behavior and collapse mechanisms of innovative aluminum foam-based sandwich panels under three-point bending

[1]  Zhi-bin Yao,et al.  Two-step foaming process combined with hot-rolling in fabrication of an aluminium foam sandwich panel , 2020 .

[2]  M. Durante,et al.  An innovative manufacturing method of aluminum foam sandwiches using a mesh-grid reinforcement as mold , 2020, The International Journal of Advanced Manufacturing Technology.

[3]  M. Durante,et al.  On the bending behaviour and the failure mechanisms of grid-reinforced aluminium foam cylinders by using an experimental/numerical approach , 2019, The International Journal of Advanced Manufacturing Technology.

[4]  Pai Peng,et al.  High-performance aluminium foam sandwich prepared through friction stir welding , 2019, Materials Letters.

[5]  N. Yoshikawa,et al.  Shaping of Aluminum Foam During Foaming of Precursor Using Steel Mesh with Various Opening Ratios , 2019, Metals.

[6]  N. Yoshikawa,et al.  Forming of aluminum foam using steel mesh as die during foaming of precursor by optical heating , 2018, Optics & Laser Technology.

[7]  H. Baillères,et al.  Numerical study on the flexural capacity of ultra-light composite timber sandwich panels , 2018, Composites Part B: Engineering.

[8]  A. Langella,et al.  Improvement of the mechanical properties of reinforced aluminum foam samples , 2018 .

[9]  M. Durante,et al.  Mechanical Characterization and FEM Modeling of Hybrid Metal Foam/Bio-Composite Samples , 2017 .

[10]  Volker Altstädt,et al.  Manufacturing of thermoplastic composite sandwich structures , 2017 .

[11]  X. Zhao,et al.  Fabrication, Microstructure and Shear Properties of Al Foam Sandwich , 2016 .

[12]  Peng Yang,et al.  Evaluation of temperature effects on low velocity impact damage in composite sandwich panels with polymeric foam cores , 2015 .

[13]  A. Astarita,et al.  An Innovative Method to Produce Metal Foam Using Cold Gas Dynamic Spray Process Assisted by Fluidized Bed Mixing of Precursors , 2015 .

[14]  Jilin Yu,et al.  Low Velocity Penetration Mechanical Behaviors of Aluminum Foam Sandwich Plates at Elevated Temperature , 2015 .

[15]  Jalal Kahani Khabushan,et al.  A study of fabricating and compressive properties of cellular Al–Si (355.0) foam using TiH2 , 2014 .

[16]  J. Banhart,et al.  Recent Trends in Aluminum Foam Sandwich Technology , 2012 .

[17]  S. Franchitti,et al.  Mechanical performance analysis of hybrid metal-foam/composite samples , 2012 .

[18]  M. K. Khan,et al.  Experimental investigation of in-plane and out-of-plane crushing of aluminum honeycomb , 2012 .

[19]  J. Y. Richard Liew,et al.  Structural Performance of Steel-Concrete-Steel Sandwich Composite Structures , 2010 .

[20]  A. G. Mamalis,et al.  Experimental investigation of the collapse modes and the main crushing characteristics of composite sandwich panels subjected to flexural loading , 2008 .

[21]  Vincenzo Crupi,et al.  Aluminium foam sandwiches collapse modes under static and dynamic three-point bending , 2007 .

[22]  J. Banhart Metal Foams: Production and Stability , 2006 .

[23]  Chad A. Ulven,et al.  Impact and post-impact vibration response of protective metal foam composite sandwich plates , 2006 .

[24]  Norman A. Fleck,et al.  Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. Part I: analytical models and minimum weight design , 2004 .

[25]  Ronald E. Miller,et al.  Failure of sandwich beams with metallic foam cores , 2001 .

[26]  Robert F. Singer,et al.  Processing of Metal Foams—Challenges and Opportunities , 2000 .

[27]  Jeom Kee Paik,et al.  The strength characteristics of aluminum honeycomb sandwich panels , 1999 .

[28]  J. Banhart 4.14 Production of Metal Foams , 2018 .

[29]  Marina Bosch,et al.  Metal Foams A Design Guide , 2016 .

[30]  Walter K. Vonach,et al.  Face layer wrinkling in sandwich shells of general configuration , 2003 .