A short review of some analog-to-digital converters resolution enhancement methods

Abstract The resolution of the analog-to-digital converter (ADC), i.e. the minimum voltage that ADC can recognize, is an important indicator of ADC performance. In order to improve the accuracy of ADCs, some approaches are proposed to enhance the resolution of ADC. This paper presents a review of ADC resolution enhancement schemes, which includes the introduction of primary features, the explanation of basic principles, as well as their merits, demerits, and trade-offs. It describes a variety of resolution enhancement schemes from different aspects such as signal processing, ADC calibration, and novel acquisition architectures, and analyzes their applicable scenes. Finally, some challenges and issues are briefly summarized, as well as some comments on future work in this field. By reviewing the current literature, we can make recommendations on the design of acquisition system resolution according to the actual requirements.

[1]  Dario Petri,et al.  Effect of additive dither on the resolution of ideal quantizers , 1994 .

[2]  Hua Fan,et al.  High-resolution ADCs design in sensors , 2018, 2018 IEEE 9th Latin American Symposium on Circuits & Systems (LASCAS).

[3]  Kuojun Yang,et al.  Timing Skew Calibration Method for TIADC-Based 20 GSPS Digital Storage Oscilloscope , 2016, J. Circuits Syst. Comput..

[4]  Antonio García,et al.  Enhancing ADC resolution through Field Programmable Analog Array dynamic reconfiguration , 2008, 2008 International Conference on Field Programmable Logic and Applications.

[5]  Sina Mahdavi,et al.  An ultra high-resolution low propagation delay time and low power with 1.25GS/s CMOS dynamic latched comparator for high-speed SAR ADCs in 180nm technology , 2017, 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI).

[6]  Boris Murmann,et al.  Digital Domain Measurement and Cancellation of Residue Amplifier Nonlinearity in Pipelined ADCs , 2007, IEEE Transactions on Instrumentation and Measurement.

[7]  Yi Zhuang,et al.  High sampling rate or high resolution in a sub-Nyquist sampling system , 2020 .

[8]  Bertan Bakkaloglu,et al.  Built-in Self-Calibration and Digital-Trim Technique for 14-Bit SAR ADCs Achieving ±1 LSB INL , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[9]  Jorge R. Fernandes,et al.  A 12-bit SAR ADC with background self-calibration based on a MOSCAP-DAC with dynamic body-biasing , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[10]  B. Murmann,et al.  A 12 b 75 MS/s pipelined ADC using open-loop residue amplification , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[11]  Wuhuang Huang,et al.  Trade-off between Sampling Rate and Resolution: A Time-synchronized Based Multi-resolution Structure for Ultra-fast Acquisition , 2018, 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

[12]  B. Widrow,et al.  Statistical theory of quantization , 1996 .

[13]  G. Horlick,et al.  Use of added random noise to improve bit-resolution in digital signal averaging. , 1981, Talanta: The International Journal of Pure and Applied Analytical Chemistry.

[14]  Bei Peng,et al.  A Virtual-ADC Digital Background Calibration Technique for Multistage A/D Conversion , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[15]  Martin Peckerar,et al.  Impact of Decorrelation Techniques on Sampling Noise in Radio-Frequency Applications , 2010, IEEE Transactions on Instrumentation and Measurement.

[16]  Maliang Liu,et al.  A 6-to-10-Bit 0.5 V-to-0.9 V Reconfigurable 2 MS/s Power Scalable SAR ADC in 0.18 $\mu{\rm m}$ CMOS , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Anantha Chandrakasan,et al.  A resolution-reconfigurable 5-to-10b 0.4-to-1V power scalable SAR ADC , 2011, 2011 IEEE International Solid-State Circuits Conference.

[18]  D.A. Hodges,et al.  A self-calibrating 15 bit CMOS A/D converter , 1984, IEEE Journal of Solid-State Circuits.

[19]  Kofi A. A. Makinwa,et al.  A Continuous-Time Zoom ADC for Low-Power Audio Applications , 2020, IEEE Journal of Solid-State Circuits.

[20]  M. Wagdy Effect of various dither forms on quantization errors of ideal A/D converters , 1989 .

[21]  Gabor C. Temes,et al.  Theory and applications of incremental ΔΣ converters , 2004, IEEE Trans. Circuits Syst. I Regul. Pap..

[22]  Michael C. W. Coln,et al.  All-Digital Background Calibration of a Successive Approximation ADC Using the “Split ADC” Architecture , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[23]  Mario R. Hueda,et al.  An Energy-Efficient Hierarchical Architecture for Time-Interleaved SAR ADC , 2019, IEEE Transactions on Circuits and Systems I: Regular Papers.

[24]  V. Lakshmikantham,et al.  Stability of conditionally invariant sets and controlleduncertain dynamic systems on time scales , 1995 .

[25]  Jiin-Chuan Wu,et al.  A two-step A/D converter in digital CMOS processes , 2002, Proceedings. IEEE Asia-Pacific Conference on ASIC,.

[26]  Robert M. Gray,et al.  Dithered quantizers , 1993, IEEE Trans. Inf. Theory.

[27]  P.B. Griffin,et al.  A High-Resolution Low-Power Oversampling ADC with Extended-Range for Bio-Sensor Arrays , 2007, 2007 IEEE Symposium on VLSI Circuits.

[28]  R. Plassche A sigma-delta modulator as an A/D converter , 1978 .

[29]  Pedram Payandehnia,et al.  Fully passive third-order noise shaping SAR ADC , 2017 .

[30]  Xiaofeng Meng,et al.  High accuracy frequency extraction based on sigma-delta ADC applied in resonant dew point sensor , 2018 .

[31]  Kofi A. A. Makinwa,et al.  A 6.3 µW 20 bit Incremental Zoom-ADC with 6 ppm INL and 1 µV Offset , 2013, IEEE Journal of Solid-State Circuits.

[32]  Rui Paulo Martins,et al.  A 2.3mW 10-bit 170MS/s two-step binary-search assisted time-interleaved SAR ADC , 2012, CICC.

[33]  E. Seifert,et al.  Enhancing the dynamic range of analog-to-digital converters by reducing excess noise , 1989, Conference Proceeding IEEE Pacific Rim Conference on Communications, Computers and Signal Processing.

[34]  Qi Wei,et al.  A 12-bit self-calibrating SAR ADC achieving a Nyquist 90.4-dB SFDR , 2013 .

[35]  Fan Ye,et al.  Machine Learning Based Prior-Knowledge-Free Calibration for Split Pipelined-SAR ADCs with Open-Loop Amplifiers Achieving 93.7-dB SFDR , 2019, ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC).

[36]  C. Svensson,et al.  A 10-bit 5-MS/s successive approximation ADC cell used in a 70-MS/s ADC array in 1.2-μm CMOS , 1994, IEEE J. Solid State Circuits.

[37]  P. Caminal,et al.  Alignment methods for averaging of high-resolution cardiac signals: a comparative study of performance , 1991, IEEE Transactions on Biomedical Engineering.

[38]  Stephen H. Lewis,et al.  Convergence analysis of a background interstage gain calibration technique for pipelined ADCs , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[39]  Filippo Attivissimo,et al.  Uncertainty evaluation in dithered ADC-based instruments , 2008 .

[40]  Un-Ku Moon,et al.  Background digital calibration techniques for pipelined ADCs , 1997 .

[41]  Kong-Pang Pun,et al.  Analysis and Design of a 14-bit SAR ADC using self-calibration DAC , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[42]  D. Hodges,et al.  Self-calibration technique for A/D converters , 1983 .

[43]  Anantha Chandrakasan,et al.  A Resolution-Reconfigurable 5-to-10-Bit 0.4-to-1 V Power Scalable SAR ADC for Sensor Applications , 2013, IEEE Journal of Solid-State Circuits.

[44]  M. Subba Reddy,et al.  An effective 6-bit flash ADC using low power CMOS technology , 2013, 2013 15th International Conference on Advanced Computing Technologies (ICACT).

[45]  Steffen Paul,et al.  Flying-Capacitor Bottom-Plate Sampling Scheme for Low-Power High-Resolution SAR ADCs , 2018, 2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC).

[46]  Mark Vesterbacka,et al.  Mitigation of Sampling Errors in VCO-Based ADCs , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[47]  K. Nguyen,et al.  A 106-dB SNR hybrid oversampling analog-to-digital converter for digital audio , 2005, IEEE Journal of Solid-State Circuits.

[48]  S. K. Sen,et al.  Design of a self regulated flash type ADC with high resolution , 2015 .

[49]  Kuojun Yang,et al.  General Analysis of Resolution Enhancement on Time-Synchronized Sampling and its Multi-Resolution Solution in 20GSPS Acquisition System , 2019, IEEE Access.

[50]  Kong-Pang Pun,et al.  Optimizing the Stage Resolution in Pipelined SAR ADCs for High-Speed High-Resolution Applications , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[52]  Minkyu Song,et al.  A 10-b 500MS/s CMOS cascaded folding A/D converter with a hybrid calibration and a prevision error correction logic , 2011, 2011 IEEE 9th International New Circuits and systems conference.

[53]  Nan Sun,et al.  An Energy-Efficient Hybrid SAR-VCO $\Delta \Sigma $ Capacitance-to-Digital Converter in 40-nm CMOS , 2017, IEEE Journal of Solid-State Circuits.

[54]  Nan Sun,et al.  A 13-ENOB Second-Order Noise-Shaping SAR ADC Realizing Optimized NTF Zeros Using the Error-Feedback Structure , 2018, IEEE Journal of Solid-State Circuits.

[55]  Lin He,et al.  Self-Dithering Technique for High-Resolution SAR ADC Design , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.

[56]  Roar Skartlien,et al.  Quantization error and resolution in ensemble averaged data with noise , 2005, IEEE Transactions on Instrumentation and Measurement.

[57]  Fan Ye,et al.  A foreground digital calibration by switching control scheme for A 12-bit SAR ADC , 2014, 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT).

[58]  Gabor C. Temes,et al.  A 16-bit low-voltage CMOS A/D converter , 1987 .

[59]  Yeonam Yoon,et al.  A 6-bit 0.81-mW 700-MS/s SAR ADC With Sparkle-Code Correction, Resolution Enhancement, and Background Window Width Calibration , 2018, IEEE Journal of Solid-State Circuits.

[60]  Yun Chiu,et al.  An equalization-based adaptive digital background calibration technique for successive approximation analog-to-digital converters , 2007, 2007 7th International Conference on ASIC.

[61]  Franco Maloberti,et al.  A 5-Bit 10-GS/sec Flash ADC with Resolution Enhancement using Metastability Detection , 2019, 2019 IEEE International Symposium on Circuits and Systems (ISCAS).

[62]  Junhua Shen,et al.  A 12-Bit 31.1- $\mu$ W 1-MS/s SAR ADC With On-Chip Input-Signal-Independent Calibration Achieving 100.4-dB SFDR Using 256-fF Sampling Capacitance , 2019, IEEE Journal of Solid-State Circuits.

[63]  Swapna Banerjee,et al.  Radix based digital calibration technique for pipelined ADC using Nyquist sampling of sinusoid , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[64]  Cao Ai,et al.  Removing the quantization error by repeated observation [image processing] , 1991, IEEE Trans. Signal Process..

[65]  George Jie Yuan,et al.  Digitally Calibrated 768-kS/s 10-b Minimum-Size SAR ADC Array With Dithering , 2012, IEEE Journal of Solid-State Circuits.

[66]  Pier Andrea Francese,et al.  A 1.8 V 1.0 GS/s 10b Self-Calibrating Unified-Folding-Interpolating ADC With 9.1 ENOB at Nyquist Frequency , 2009, IEEE Journal of Solid-State Circuits.

[67]  Kuojun Yang,et al.  Information Entropy- and Average-Based High-Resolution Digital Storage Oscilloscope , 2014 .

[68]  Jinghong Chen,et al.  A 500-MS/s 13-Bit SAR-Assisted Time-Interleaved Digital-Slope ADC , 2019, 2019 IEEE International Symposium on Circuits and Systems (ISCAS).

[69]  Sameh Ibrahim,et al.  A 15.5-mW 20-GSps 4-bit charge-steering flash ADC , 2015, 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS).

[70]  Zhangming Zhu,et al.  Analysis and Modeling of a SAR-VCO Hybrid ADC Architecture , 2018, J. Circuits Syst. Comput..

[71]  Kofi A. A. Makinwa,et al.  A 0.12 mm 2 7.4 μ W Micropower Temperature Sensor With an Inaccuracy of ± 0.2°C (3 Sigma ) From - 30°C to 125°C , 2011, IEEE J. Solid State Circuits.

[72]  Michael P. Flynn,et al.  A SAR-Assisted Two-Stage Pipeline ADC , 2011, IEEE Journal of Solid-State Circuits.

[73]  J. Srinonchat,et al.  The correlated noise reducing model using a kalman filter for speech vector quantization , 2012, 2012 IEEE International Conference on Electron Devices and Solid State Circuit (EDSSC).

[74]  Peng Ye,et al.  Theory of Quantization-Interleaving ADC and Its Application in High-Resolution Oscilloscope , 2019, IEEE Access.

[75]  Luca Benini,et al.  A Reconfigurable 5-to-14 bit SAR ADC for Battery-Powered Medical Instrumentation , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[76]  Abdollah Khoei,et al.  Input dependent clock jitter in high speed and high resolution ADCs , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[77]  Duc Minh Nguyen,et al.  All-Digital Calibration of Timing Skews for TIADCs Using the Polyphase Decomposition , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.

[78]  Kofi Makinwa,et al.  A Low Power Continuous-Time Zoom ADC for Audio Applications , 2019, 2019 Symposium on VLSI Circuits.

[79]  John Vanderkooy,et al.  A theory of nonsubtractive dither , 2000, IEEE Trans. Signal Process..

[80]  Zhongjian Chen,et al.  A self-adaptive digital calibration technique for multi-channel high resolution capacitive SAR ADCs , 2017, 2017 IEEE 12th International Conference on ASIC (ASICON).

[81]  Minkyu Song,et al.  12-bit 80MSPS double folding/interpolation A/D converter , 2008, 2008 International SoC Design Conference.

[82]  Tommy Halim,et al.  Enhancing resolution of delta sigma modulator using 1-bit adaptive DAC , 2013, 2013 International SoC Design Conference (ISOCC).

[83]  L. Schuchman Dither Signals and Their Effect on Quantization Noise , 1964 .

[84]  Rosario Schiano Lo Moriello,et al.  Compressive sampling-based strategy for enhancing ADCs resolution , 2014 .

[85]  H. S. Fetterman,et al.  CMOS pipelined ADC employing dither to improve linearity , 1999, Proceedings of the IEEE 1999 Custom Integrated Circuits Conference (Cat. No.99CH36327).

[86]  Borivoje Nikolic,et al.  Least mean square adaptive digital background calibration of pipelined analog-to-digital converters , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[87]  Abhilash Nair,et al.  "Split-ADC" Digital Background Correction of Open-Loop Residue Amplifier Nonlinearity Errors in a 14b Pipeline ADC , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[88]  Charles Bishop Effects of averaging to reject unwanted signals in Digital Sampling Oscilloscopes , 2010, 2010 IEEE AUTOTESTCON.

[89]  S. H. Lewis,et al.  An 8-bit 80-Msample/s pipelined analog-to-digital converter with background calibration , 2001 .

[90]  Guanhua Wang,et al.  IRD Digital Background Calibration of SAR ADC With Coarse Reference ADC Acceleration , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[91]  Hua Fan Effective method to improve linearity of high-resolution SAR ADC , 2017, Microelectron. J..

[92]  James C. Candy,et al.  The Structure of Quantization Noise from Sigma-Delta Modulation , 1981, IEEE Trans. Commun..

[93]  Michael P. Flynn,et al.  A 12b 50MS/s 3.5mW SAR assisted 2-stage pipeline ADC , 2010, 2010 Symposium on VLSI Circuits.

[94]  Keiji Tatsumi,et al.  A Biomedical Sensor System With Stochastic A/D Conversion and Error Correction by Machine Learning , 2019, IEEE Access.

[95]  Tien-Yu Lo,et al.  An Oversampling SAR ADC With DAC Mismatch Error Shaping Achieving 105 dB SFDR and 101 dB SNDR Over 1 kHz BW in 55 nm CMOS , 2016, IEEE Journal of Solid-State Circuits.

[96]  Pier Andrea Francese,et al.  A 1.8V 1.0GS/s 10b self-calibrating unified-folding-interpolating ADC with 9.1 ENOB at Nyquist frequency , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[97]  Enrique Prefasi,et al.  VCO-ADC Resolution Enhancement Using Maximum Length Sequences , 2018, 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

[98]  Yung-Hui Chung,et al.  A 38-mW 7-bit 5-GS/s Time-Interleaved SAR ADC with Background Skew Calibration , 2018, 2018 IEEE Asian Solid-State Circuits Conference (A-SSCC).

[99]  A Cao,et al.  REMOVING THE QUANTIZATION-ERROR BY REPEATED OBSERVATION , 1991 .

[100]  W. Lai,et al.  Design of SAR ADC with DAC for High-Performance Force Sensing Detector , 2020, 2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE).

[101]  Tohid Moosazadeh,et al.  A Predetermined LMS Digital Background Calibration Technique for Pipelined ADCs , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.

[102]  Sai-Weng Sin,et al.  A 12b 180MS/s 0.068mm2 With Full-Calibration-Integrated Pipelined-SAR ADC , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[103]  Jan Mulder,et al.  An 800 MS/s Dual-Residue Pipeline ADC in 40 nm CMOS , 2011, IEEE Journal of Solid-State Circuits.

[104]  L. Angrisani,et al.  On the optimal sampling of bandpass measurement signals through data acquisition systems , 2008 .

[105]  C.W. Bostian,et al.  Analog to Digital Converters , 2020, Embedded Systems Design using the MSP430FR2355 LaunchPad™.

[106]  Michael P. Flynn,et al.  A 90MS/s 11MHz bandwidth 62dB SNDR noise-shaping SAR ADC , 2012, 2012 IEEE International Solid-State Circuits Conference.

[107]  Tadahiro Kuroda,et al.  A 0.5 V 1.1 MS/sec 6.3 fJ/Conversion-Step SAR-ADC With Tri-Level Comparator in 40 nm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[108]  Ralf Srama,et al.  Low-charge detector for the monitoring of hyper-velocity micron-sized dust particles , 2008 .

[109]  Jianhui Wu,et al.  A 1.8-V 3.1 mW successive approximation ADC in system-on-chip , 2008 .

[110]  Nan Sun,et al.  A hybrid SAR-VCO ΔΣ ADC with first-order noise shaping , 2014, Proceedings of the IEEE 2014 Custom Integrated Circuits Conference.

[111]  Peter Kabal,et al.  Correlation properties of quantization noise , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[112]  J. P. Keradec,et al.  Improvement in the linearity of fast digital oscilloscopes used in averaging mode , 1993 .

[113]  Yintang Yang,et al.  A CMOS 8-bit two-step A/D converter with low power consumption , 2005, Proceedings of 2005 IEEE International Workshop on VLSI Design and Video Technology, 2005..

[114]  P. A. Ramamoorthy,et al.  A preprocessing architecture for resolution enhancement in high-speed analog-to-digital converters , 1994 .

[115]  Filippo Attivissimo,et al.  Linearization of A/D converters by dither and Chebyshev polynomials , 2004 .

[116]  Pieter Rombouts,et al.  A 13.5-b 1.2-V micropower extended counting A/D converter , 2001, IEEE J. Solid State Circuits.

[117]  Kofi A. A. Makinwa,et al.  A CMOS temperature sensor with a voltage-calibrated inaccuracy of ±0.15°C (3σ) from −55 to 125°C , 2012, 2012 IEEE International Solid-State Circuits Conference.

[118]  C. Jansson,et al.  A high-resolution, compact, and low-power ADC suitable for array implementation in standard CMOS , 1995 .

[119]  L. Angrisani,et al.  Novel built-in solution for data acquisition system resolution enhancement , 2011, 2011 IEEE International Instrumentation and Measurement Technology Conference.

[120]  P.E. Cahill,et al.  A stacked A-to-D converter for increased radar signal processor dynamic range , 2001, Proceedings of the 2001 IEEE Radar Conference (Cat. No.01CH37200).

[121]  Hao Deng,et al.  Machine-Learning Based Nonlinerity Correction for Coarse-Fine SAR-TDC Hybrid ADC , 2020, 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS).

[122]  H. V. Sorensen,et al.  An overview of sigma-delta converters , 1996, IEEE Signal Process. Mag..

[123]  Kofi A. A. Makinwa,et al.  A 20-b $\pm$ 40-mV Range Read-Out IC With 50-nV Offset and 0.04% Gain Error for Bridge Transducers , 2012, IEEE Journal of Solid-State Circuits.

[124]  Atila Alvandpour,et al.  Power analysis for two-stage high resolution pipeline SAR ADC , 2015, 2015 22nd International Conference Mixed Design of Integrated Circuits & Systems (MIXDES).

[125]  Li Ding,et al.  A background gain- calibration technique for low voltage pipelined ADCs based on nonlinear interpolation , 2013, 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS).

[126]  Jing Jin,et al.  A low-cost digital-domain foreground calibration for high resolution SAR ADCs , 2018, Microelectron. J..

[127]  Vilhelm Gregers-Hansen,et al.  A Stacked Analog-to-Digital Converter for Increased Radar Signal Processor Dynamic Range , 2001 .

[128]  Michele Vadursi,et al.  An Efficient Pre-Processing Scheme to Enhance Resolution in Band-Pass Signals Acquisition , 2012, IEEE Transactions on Instrumentation and Measurement.

[129]  J Holub Various scale errors in dithered quantizers: Visualisation and reduction , 2000 .

[130]  P. J. B. Koeck Quantization errors in averaged digitized data , 2001, Signal Process..

[131]  R. Schreier,et al.  Delta-sigma data converters : theory, design, and simulation , 1997 .

[132]  Hongyun Xie,et al.  Simulink Modeling and Performance Verification of a High Resolution Zoom ADC , 2019, 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID).

[133]  Byoung-Ho Kim,et al.  Digital foreground calibration of capacitor mismatch for SAR ADCs , 2014 .

[134]  Shoji Kawahito,et al.  A Low-Noise High Intrascene Dynamic Range CMOS Image Sensor With a 13 to 19b Variable-Resolution Column-Parallel Folding-Integration/Cyclic ADC , 2012, IEEE Journal of Solid-State Circuits.

[135]  C. Fager,et al.  Improvement of Oscilloscope Based RF Measurements by Statistical Averaging Techniques , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[136]  V. Gregers-Hansen,et al.  A stacked analog-to-digital converter providing 100 dB of dynamic range , 2005, IEEE International Radar Conference, 2005..

[137]  Chao Hu,et al.  Improving ADC resolution through the least square estimation , 2008, 2008 IEEE International Conference on Automation and Logistics.

[138]  G. Temes Delta-sigma data converters , 1994 .

[139]  Yuanjin Zheng,et al.  A Statistic-Based Calibration Method for TIADC System , 2015 .